Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 19

1.

An alternative pathway for the formation of aromatic aroma compounds derived from l-phenylalanine via phenylpyruvic acid in tea (Camellia sinensis (L.) O. Kuntze) leaves.

Wang X, Zeng L, Liao Y, Zhou Y, Xu X, Dong F, Yang Z.

Food Chem. 2019 Jan 1;270:17-24. doi: 10.1016/j.foodchem.2018.07.056. Epub 2018 Jul 9.

PMID:
30174031
2.

Functional Characterization of An Allene Oxide Synthase Involved in Biosynthesis of Jasmonic Acid and Its Influence on Metabolite Profiles and Ethylene Formation in Tea (Camellia sinensis) Flowers.

Peng Q, Zhou Y, Liao Y, Zeng L, Xu X, Jia Y, Dong F, Li J, Tang J, Yang Z.

Int J Mol Sci. 2018 Aug 18;19(8). pii: E2440. doi: 10.3390/ijms19082440.

3.

Proteomic and Biochemical Changes during Senescence of Phalaenopsis 'Red Dragon' Petals.

Chen C, Zeng L, Ye Q.

Int J Mol Sci. 2018 Apr 28;19(5). pii: E1317. doi: 10.3390/ijms19051317.

4.

Study of the biochemical formation pathway of aroma compound 1-phenylethanol in tea (Camellia sinensis (L.) O. Kuntze) flowers and other plants.

Zhou Y, Peng Q, Zeng L, Tang J, Li J, Dong F, Yang Z.

Food Chem. 2018 Aug 30;258:352-358. doi: 10.1016/j.foodchem.2018.03.095. Epub 2018 Mar 21.

PMID:
29655745
5.

Biosynthesis of Jasmine Lactone in Tea ( Camellia sinensis) Leaves and Its Formation in Response to Multiple Stresses.

Zeng L, Zhou Y, Fu X, Liao Y, Yuan Y, Jia Y, Dong F, Yang Z.

J Agric Food Chem. 2018 Apr 18;66(15):3899-3909. doi: 10.1021/acs.jafc.8b00515. Epub 2018 Apr 6.

PMID:
29605993
6.

Occurrence of Functional Molecules in the Flowers of Tea (Camellia sinensis) Plants: Evidence for a Second Resource.

Chen Y, Zhou Y, Zeng L, Dong F, Tu Y, Yang Z.

Molecules. 2018 Mar 29;23(4). pii: E790. doi: 10.3390/molecules23040790. Review.

7.

Regulation of the Rhythmic Emission of Plant Volatiles by the Circadian Clock.

Zeng L, Wang X, Kang M, Dong F, Yang Z.

Int J Mol Sci. 2017 Nov 13;18(11). pii: E2408. doi: 10.3390/ijms18112408. Review.

8.

Influence of Plant Growth Retardants on Quality of Codonopsis Radix.

Liao Y, Zeng L, Li P, Sun T, Wang C, Li F, Chen Y, Du B, Yang Z.

Molecules. 2017 Oct 9;22(10). pii: E1655. doi: 10.3390/molecules22101655.

9.

α-Farnesene and ocimene induce metabolite changes by volatile signaling in neighboring tea (Camellia sinensis) plants.

Zeng L, Liao Y, Li J, Zhou Y, Tang J, Dong F, Yang Z.

Plant Sci. 2017 Nov;264:29-36. doi: 10.1016/j.plantsci.2017.08.005. Epub 2017 Aug 18.

PMID:
28969800
10.

Studies on the Biochemical Formation Pathway of the Amino Acid l-Theanine in Tea (Camellia sinensis) and Other Plants.

Cheng S, Fu X, Wang X, Liao Y, Zeng L, Dong F, Yang Z.

J Agric Food Chem. 2017 Aug 23;65(33):7210-7216. doi: 10.1021/acs.jafc.7b02437. Epub 2017 Aug 10.

PMID:
28796499
11.

Does oolong tea (Camellia sinensis) made from a combination of leaf and stem smell more aromatic than leaf-only tea? Contribution of the stem to oolong tea aroma.

Zeng L, Zhou Y, Fu X, Mei X, Cheng S, Gui J, Dong F, Tang J, Ma S, Yang Z.

Food Chem. 2017 Dec 15;237:488-498. doi: 10.1016/j.foodchem.2017.05.137. Epub 2017 May 29.

PMID:
28764024
12.

Formation and emission of linalool in tea (Camellia sinensis) leaves infested by tea green leafhopper (Empoasca (Matsumurasca) onukii Matsuda).

Mei X, Liu X, Zhou Y, Wang X, Zeng L, Fu X, Li J, Tang J, Dong F, Yang Z.

Food Chem. 2017 Dec 15;237:356-363. doi: 10.1016/j.foodchem.2017.05.124. Epub 2017 May 25.

PMID:
28764007
13.

Functional characterizations of β-glucosidases involved in aroma compound formation in tea (Camellia sinensis).

Zhou Y, Zeng L, Gui J, Liao Y, Li J, Tang J, Meng Q, Dong F, Yang Z.

Food Res Int. 2017 Jun;96:206-214. doi: 10.1016/j.foodres.2017.03.049. Epub 2017 Apr 5.

PMID:
28528101
14.

Formation of (E)-nerolidol in tea (Camellia sinensis) leaves exposed to multiple stresses during tea manufacturing.

Zhou Y, Zeng L, Liu X, Gui J, Mei X, Fu X, Dong F, Tang J, Zhang L, Yang Z.

Food Chem. 2017 Sep 15;231:78-86. doi: 10.1016/j.foodchem.2017.03.122. Epub 2017 Mar 23.

PMID:
28450026
15.

Proteolysis of chloroplast proteins is responsible for accumulation of free amino acids in dark-treated tea (Camellia sinensis) leaves.

Chen Y, Fu X, Mei X, Zhou Y, Cheng S, Zeng L, Dong F, Yang Z.

J Proteomics. 2017 Mar 22;157:10-17. doi: 10.1016/j.jprot.2017.01.017. Epub 2017 Feb 2.

PMID:
28163235
16.

Optimization of the Production of 1-Phenylethanol Using Enzymes from Flowers of Tea (Camellia sinensis) Plants.

Dong F, Zhou Y, Zeng L, Watanabe N, Su X, Yang Z.

Molecules. 2017 Jan 13;22(1). pii: E131. doi: 10.3390/molecules22010131.

17.

The sphingolipid biosynthetic enzyme Sphingolipid delta8 desaturase is important for chilling resistance of tomato.

Zhou Y, Zeng L, Fu X, Mei X, Cheng S, Liao Y, Deng R, Xu X, Jiang Y, Duan X, Baldermann S, Yang Z.

Sci Rep. 2016 Dec 8;6:38742. doi: 10.1038/srep38742.

18.

Elucidation of Differential Accumulation of 1-Phenylethanol in Flowers and Leaves of Tea (Camellia sinensis) Plants.

Dong F, Zhou Y, Zeng L, Peng Q, Chen Y, Zhang L, Su X, Watanabe N, Yang Z.

Molecules. 2016 Aug 23;21(9). pii: E1106. doi: 10.3390/molecules21091106.

19.

Formation of Volatile Tea Constituent Indole During the Oolong Tea Manufacturing Process.

Zeng L, Zhou Y, Gui J, Fu X, Mei X, Zhen Y, Ye T, Du B, Dong F, Watanabe N, Yang Z.

J Agric Food Chem. 2016 Jun 22;64(24):5011-9. doi: 10.1021/acs.jafc.6b01742. Epub 2016 Jun 13.

PMID:
27263428

Supplemental Content

Loading ...
Support Center