Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 23

1.

Characterization of enzymes specifically producing chiral flavor compounds (R)- and (S)-1-phenylethanol from tea (Camellia sinensis) flowers.

Zhou Y, Peng Q, Zhang L, Cheng S, Zeng L, Dong F, Yang Z.

Food Chem. 2019 May 15;280:27-33. doi: 10.1016/j.foodchem.2018.12.035. Epub 2018 Dec 16.

PMID:
30642496
2.

Differential accumulation of specialized metabolite l-theanine in green and albino-induced yellow tea (Camellia sinensis) leaves.

Cheng S, Fu X, Liao Y, Xu X, Zeng L, Tang J, Li J, Lai J, Yang Z.

Food Chem. 2019 Mar 15;276:93-100. doi: 10.1016/j.foodchem.2018.10.010. Epub 2018 Oct 3.

PMID:
30409668
3.

Differential Accumulation of Aroma Compounds in Normal Green and Albino-Induced Yellow Tea (Camellia sinensis) Leaves.

Dong F, Zeng L, Yu Z, Li J, Tang J, Su X, Yang Z.

Molecules. 2018 Oct 18;23(10). pii: E2677. doi: 10.3390/molecules23102677.

4.

Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea (Camellia sinensis) to safely and effectively improve tea aroma.

Zeng L, Watanabe N, Yang Z.

Crit Rev Food Sci Nutr. 2018 Oct 2:1-14. doi: 10.1080/10408398.2018.1506907. [Epub ahead of print]

PMID:
30277806
5.

An alternative pathway for the formation of aromatic aroma compounds derived from l-phenylalanine via phenylpyruvic acid in tea (Camellia sinensis (L.) O. Kuntze) leaves.

Wang X, Zeng L, Liao Y, Zhou Y, Xu X, Dong F, Yang Z.

Food Chem. 2019 Jan 1;270:17-24. doi: 10.1016/j.foodchem.2018.07.056. Epub 2018 Jul 9.

PMID:
30174031
6.

Functional Characterization of An Allene Oxide Synthase Involved in Biosynthesis of Jasmonic Acid and Its Influence on Metabolite Profiles and Ethylene Formation in Tea (Camellia sinensis) Flowers.

Peng Q, Zhou Y, Liao Y, Zeng L, Xu X, Jia Y, Dong F, Li J, Tang J, Yang Z.

Int J Mol Sci. 2018 Aug 18;19(8). pii: E2440. doi: 10.3390/ijms19082440.

7.

Proteomic and Biochemical Changes during Senescence of Phalaenopsis 'Red Dragon' Petals.

Chen C, Zeng L, Ye Q.

Int J Mol Sci. 2018 Apr 28;19(5). pii: E1317. doi: 10.3390/ijms19051317.

8.

Study of the biochemical formation pathway of aroma compound 1-phenylethanol in tea (Camellia sinensis (L.) O. Kuntze) flowers and other plants.

Zhou Y, Peng Q, Zeng L, Tang J, Li J, Dong F, Yang Z.

Food Chem. 2018 Aug 30;258:352-358. doi: 10.1016/j.foodchem.2018.03.095. Epub 2018 Mar 21.

PMID:
29655745
9.

Biosynthesis of Jasmine Lactone in Tea ( Camellia sinensis) Leaves and Its Formation in Response to Multiple Stresses.

Zeng L, Zhou Y, Fu X, Liao Y, Yuan Y, Jia Y, Dong F, Yang Z.

J Agric Food Chem. 2018 Apr 18;66(15):3899-3909. doi: 10.1021/acs.jafc.8b00515. Epub 2018 Apr 6.

PMID:
29605993
10.

Occurrence of Functional Molecules in the Flowers of Tea (Camellia sinensis) Plants: Evidence for a Second Resource.

Chen Y, Zhou Y, Zeng L, Dong F, Tu Y, Yang Z.

Molecules. 2018 Mar 29;23(4). pii: E790. doi: 10.3390/molecules23040790. Review.

11.

Regulation of the Rhythmic Emission of Plant Volatiles by the Circadian Clock.

Zeng L, Wang X, Kang M, Dong F, Yang Z.

Int J Mol Sci. 2017 Nov 13;18(11). pii: E2408. doi: 10.3390/ijms18112408. Review.

12.

Influence of Plant Growth Retardants on Quality of Codonopsis Radix.

Liao Y, Zeng L, Li P, Sun T, Wang C, Li F, Chen Y, Du B, Yang Z.

Molecules. 2017 Oct 9;22(10). pii: E1655. doi: 10.3390/molecules22101655.

13.

α-Farnesene and ocimene induce metabolite changes by volatile signaling in neighboring tea (Camellia sinensis) plants.

Zeng L, Liao Y, Li J, Zhou Y, Tang J, Dong F, Yang Z.

Plant Sci. 2017 Nov;264:29-36. doi: 10.1016/j.plantsci.2017.08.005. Epub 2017 Aug 18.

PMID:
28969800
14.

Studies on the Biochemical Formation Pathway of the Amino Acid l-Theanine in Tea (Camellia sinensis) and Other Plants.

Cheng S, Fu X, Wang X, Liao Y, Zeng L, Dong F, Yang Z.

J Agric Food Chem. 2017 Aug 23;65(33):7210-7216. doi: 10.1021/acs.jafc.7b02437. Epub 2017 Aug 10.

PMID:
28796499
15.

Does oolong tea (Camellia sinensis) made from a combination of leaf and stem smell more aromatic than leaf-only tea? Contribution of the stem to oolong tea aroma.

Zeng L, Zhou Y, Fu X, Mei X, Cheng S, Gui J, Dong F, Tang J, Ma S, Yang Z.

Food Chem. 2017 Dec 15;237:488-498. doi: 10.1016/j.foodchem.2017.05.137. Epub 2017 May 29.

PMID:
28764024
16.

Formation and emission of linalool in tea (Camellia sinensis) leaves infested by tea green leafhopper (Empoasca (Matsumurasca) onukii Matsuda).

Mei X, Liu X, Zhou Y, Wang X, Zeng L, Fu X, Li J, Tang J, Dong F, Yang Z.

Food Chem. 2017 Dec 15;237:356-363. doi: 10.1016/j.foodchem.2017.05.124. Epub 2017 May 25.

PMID:
28764007
17.

Functional characterizations of β-glucosidases involved in aroma compound formation in tea (Camellia sinensis).

Zhou Y, Zeng L, Gui J, Liao Y, Li J, Tang J, Meng Q, Dong F, Yang Z.

Food Res Int. 2017 Jun;96:206-214. doi: 10.1016/j.foodres.2017.03.049. Epub 2017 Apr 5.

PMID:
28528101
18.

Formation of (E)-nerolidol in tea (Camellia sinensis) leaves exposed to multiple stresses during tea manufacturing.

Zhou Y, Zeng L, Liu X, Gui J, Mei X, Fu X, Dong F, Tang J, Zhang L, Yang Z.

Food Chem. 2017 Sep 15;231:78-86. doi: 10.1016/j.foodchem.2017.03.122. Epub 2017 Mar 23.

PMID:
28450026
19.

Proteolysis of chloroplast proteins is responsible for accumulation of free amino acids in dark-treated tea (Camellia sinensis) leaves.

Chen Y, Fu X, Mei X, Zhou Y, Cheng S, Zeng L, Dong F, Yang Z.

J Proteomics. 2017 Mar 22;157:10-17. doi: 10.1016/j.jprot.2017.01.017. Epub 2017 Feb 2.

PMID:
28163235
20.

Optimization of the Production of 1-Phenylethanol Using Enzymes from Flowers of Tea (Camellia sinensis) Plants.

Dong F, Zhou Y, Zeng L, Watanabe N, Su X, Yang Z.

Molecules. 2017 Jan 13;22(1). pii: E131. doi: 10.3390/molecules22010131.

Supplemental Content

Loading ...
Support Center