Format
Sort by
Items per page

Send to

Choose Destination

Best matches for Kevin E. Power:

Search results

Items: 1 to 20 of 34

1.

Neuromuscular Mechanisms Underlying Changes in Force Production during an Attentional Focus Task.

Wiseman S, Alizadeh S, Halperin I, Lahouti B, Snow NJ, Power KE, Button DC.

Brain Sci. 2020 Jan 7;10(1). pii: E33. doi: 10.3390/brainsci10010033.

2.

Short-interval intracortical inhibition of the biceps brachii in chronic-resistance versus non-resistance-trained individuals.

Lahouti B, Lockyer EJ, Wiseman S, Power KE, Button DC.

Exp Brain Res. 2019 Nov;237(11):3023-3032. doi: 10.1007/s00221-019-05649-1. Epub 2019 Sep 16.

PMID:
31529168
3.

Corticospinal-Evoked Responses from the Biceps Brachii during Arm Cycling across Multiple Power Outputs.

Lockyer EJ, Hosel K, Nippard AP, Button DC, Power KE.

Brain Sci. 2019 Aug 19;9(8). pii: E205. doi: 10.3390/brainsci9080205.

4.

Short-interval intracortical inhibition to the biceps brachii is present during arm cycling but is not different than a position- and intensity-matched tonic contraction.

Alcock LR, Spence AJ, Lockyer EJ, Button DC, Power KE.

Exp Brain Res. 2019 Sep;237(9):2145-2154. doi: 10.1007/s00221-019-05579-y. Epub 2019 Jun 15.

PMID:
31203402
5.

Corticospinal excitability to the biceps and triceps brachii during forward and backward arm cycling is direction- and phase-dependent.

Nippard AP, Lockyer EJ, Button DC, Power KE.

Appl Physiol Nutr Metab. 2020 Jan;45(1):72-80. doi: 10.1139/apnm-2019-0043. Epub 2019 Jun 5.

PMID:
31167082
6.

Delayed-Onset Muscle Soreness and Topical Analgesic Alter Corticospinal Excitability of the Biceps Brachii.

Stefanelli L, Lockyer EJ, Collins BW, Snow NJ, Crocker J, Kent C, Power KE, Button DC.

Med Sci Sports Exerc. 2019 Nov;51(11):2344-2356. doi: 10.1249/MSS.0000000000002055.

PMID:
31157708
7.

Corticospinal Excitability to the Biceps Brachii is Not Different When Arm Cycling at a Self-Selected or Fixed Cadence.

Lockyer EJ, Nippard AP, Kean K, Hollohan N, Button DC, Power KE.

Brain Sci. 2019 Feb 14;9(2). pii: E41. doi: 10.3390/brainsci9020041.

8.

The effect of dominant first dorsal interosseous fatigue on the force production of a contralateral homologous and heterologous muscle.

Li Y, Power KE, Marchetti PH, Behm DG.

Appl Physiol Nutr Metab. 2019 Jul;44(7):704-712. doi: 10.1139/apnm-2018-0583. Epub 2018 Nov 23.

PMID:
30468626
9.

Corticospinal excitability, assessed through stimulus response curves, is phase-, task-, and muscle-dependent during arm cycling.

Forman DA, Monks M, Power KE.

Neurosci Lett. 2019 Jan 23;692:100-106. doi: 10.1016/j.neulet.2018.11.003. Epub 2018 Nov 3.

PMID:
30399398
10.

Quantitative feature analysis of continuous analytic wavelet transforms of electrocardiography and electromyography.

Wachowiak MP, Wachowiak-Smolíková R, Johnson MJ, Hay DC, Power KE, Williams-Bell FM.

Philos Trans A Math Phys Eng Sci. 2018 Aug 13;376(2126). pii: 20170250. doi: 10.1098/rsta.2017.0250.

11.

Neuromuscular fatigue during repeated sprint exercise: underlying physiology and methodological considerations.

Collins BW, Pearcey GEP, Buckle NCM, Power KE, Button DC.

Appl Physiol Nutr Metab. 2018 Nov;43(11):1166-1175. doi: 10.1139/apnm-2018-0080. Epub 2018 Apr 27. Review.

PMID:
29701482
12.

Modulation of motoneurone excitability during rhythmic motor outputs.

Power KE, Lockyer EJ, Forman DA, Button DC.

Appl Physiol Nutr Metab. 2018 Nov;43(11):1176-1185. doi: 10.1139/apnm-2018-0077. Epub 2018 Mar 9. Review.

PMID:
29522692
13.

Environmental temperature and exercise modality independently impact central and muscle fatigue among people with multiple sclerosis.

Grover G, Ploughman M, Philpott DT, Kelly LP, Devasahayam AJ, Wadden K, Power KE, Button DC.

Mult Scler J Exp Transl Clin. 2017 Dec 21;3(4):2055217317747625. doi: 10.1177/2055217317747625. eCollection 2017 Oct-Dec.

14.

Phase- and Workload-Dependent Changes in Corticospinal Excitability to the Biceps and Triceps Brachii during Arm Cycling.

Spence AJ, Alcock LR, Lockyer EJ, Button DC, Power KE.

Brain Sci. 2016 Dec 15;6(4). pii: E60.

15.
16.

Repeated sprint ability but not neuromuscular fatigue is dependent on short versus long duration recovery time between sprints in healthy males.

Monks MR, Compton CT, Yetman JD, Power KE, Button DC.

J Sci Med Sport. 2017 Jun;20(6):600-605. doi: 10.1016/j.jsams.2016.10.008. Epub 2016 Oct 27.

PMID:
27825551
17.

Differences in corticospinal excitability to the biceps brachii between arm cycling and tonic contraction are not evident at the immediate onset of movement.

Forman DA, Philpott DT, Button DC, Power KE.

Exp Brain Res. 2016 Aug;234(8):2339-49. doi: 10.1007/s00221-016-4639-z. Epub 2016 Apr 1.

PMID:
27038204
18.

Arm-cycling sprints induce neuromuscular fatigue of the elbow flexors and alter corticospinal excitability of the biceps brachii.

Pearcey GE, Bradbury-Squires DJ, Monks M, Philpott D, Power KE, Button DC.

Appl Physiol Nutr Metab. 2016 Feb;41(2):199-209. doi: 10.1139/apnm-2015-0438. Epub 2015 Nov 3.

PMID:
26799694
19.

Changes in supraspinal and spinal excitability of the biceps brachii following brief, non-fatiguing submaximal contractions of the elbow flexors in resistance-trained males.

Aboodarda SJ, Copithorne DB, Pearcey GEP, Button DC, Power KE.

Neurosci Lett. 2015 Oct 21;607:66-71. doi: 10.1016/j.neulet.2015.09.028. Epub 2015 Sep 28.

PMID:
26415709
20.

Elbow flexor fatigue modulates central excitability of the knee extensors.

Aboodarda SJ, Copithorne DB, Power KE, Drinkwater E, Behm DG.

Appl Physiol Nutr Metab. 2015 Sep;40(9):924-30. doi: 10.1139/apnm-2015-0088. Epub 2015 May 6.

PMID:
26300013

Supplemental Content

Loading ...
Support Center