Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 32

1.

Efficient Conversion of Carbon Dioxide with Si-Based Reducing Agents Catalyzed by Metal Complexes and Salts.

Motokura K, Pramudita RA.

Chem Rec. 2019 Jul;19(7):1199-1209. doi: 10.1002/tcr.201800076. Epub 2018 Sep 4. Review.

PMID:
30252193
2.

Determination of the positions of aluminum atoms introduced into SSZ-35 and the catalytic properties of the generated Brønsted acid sites.

Miyaji A, Kimura N, Shiga A, Hayashi Y, Nishitoba T, Motokura K, Baba T.

Phys Chem Chem Phys. 2017 Mar 1;19(9):6508-6518. doi: 10.1039/c6cp08143f.

PMID:
28197567
3.

Experimental and computational studies of the roles of MgO and Zn in talc for the selective formation of 1,3-butadiene in the conversion of ethanol.

Hayashi Y, Akiyama S, Miyaji A, Sekiguchi Y, Sakamoto Y, Shiga A, Koyama TR, Motokura K, Baba T.

Phys Chem Chem Phys. 2016 Sep 14;18(36):25191-25209.

PMID:
27711446
4.

Cascade Synthesis of Five-Membered Lactones using Biomass-Derived Sugars as Carbon Nucleophiles.

Yamaguchi S, Matsuo T, Motokura K, Miyaji A, Baba T.

Chem Asian J. 2016 Jun 6;11(11):1731-7. doi: 10.1002/asia.201600307. Epub 2016 May 9.

PMID:
27061111
5.

Direct Estimation of the Surface Location of Immobilized Functional Groups for Concerted Catalysis Using a Probe Molecule.

Noda H, Motokura K, Wakabayashi Y, Sasaki K, Tajiri H, Miyaji A, Yamaguchi S, Baba T.

Chemistry. 2016 Apr 4;22(15):5113-7. doi: 10.1002/chem.201600263. Epub 2016 Feb 25.

PMID:
26853075
6.

Mechanistic Insight into a Sugar-Accelerated Tin-Catalyzed Cascade Synthesis of α-Hydroxy-γ-butyrolactone from Formaldehyde.

Yamaguchi S, Matsuo T, Motokura K, Sakamoto Y, Miyaji A, Baba T.

ChemSusChem. 2015 Nov;8(21):3661-7. doi: 10.1002/cssc.201500885. Epub 2015 Oct 6.

PMID:
26437691
7.

Discrimination of the prochiral hydrogens at the C-2 position of n-alkanes by the methane/ammonia monooxygenase family proteins.

Miyaji A, Miyoshi T, Motokura K, Baba T.

Org Biomol Chem. 2015 Aug 14;13(30):8261-70. doi: 10.1039/c5ob00640f.

PMID:
26138087
8.

Mechanistic studies on the cascade conversion of 1,3-dihydroxyacetone and formaldehyde into α-hydroxy-γ-butyrolactone.

Yamaguchi S, Matsuo T, Motokura K, Sakamoto Y, Miyaji A, Baba T.

ChemSusChem. 2015 Mar;8(5):853-60. doi: 10.1002/cssc.201403100. Epub 2015 Feb 3.

PMID:
25648856
9.

Influence of zeolite pore structure on product selectivities for protolysis and hydride transfer reactions in the cracking of n-pentane.

Miyaji A, Iwase Y, Nishitoba T, Long NQ, Motokura K, Baba T.

Phys Chem Chem Phys. 2015 Feb 21;17(7):5014-32. doi: 10.1039/c4cp04438j.

PMID:
25598271
10.

Tin-catalyzed conversion of biomass-derived triose sugar and formaldehyde to α-hydroxy-γ-butyrolactone.

Yamaguchi S, Motokura K, Sakamoto Y, Miyaji A, Baba T.

Chem Commun (Camb). 2014 May 7;50(35):4600-2. doi: 10.1039/c4cc00954a.

PMID:
24668044
11.

Highly active and selective catalysis of copper diphosphine complexes for the transformation of carbon dioxide into silyl formate.

Motokura K, Kashiwame D, Takahashi N, Miyaji A, Baba T.

Chemistry. 2013 Jul 22;19(30):10030-7. doi: 10.1002/chem.201300935. Epub 2013 Jun 17.

PMID:
23776009
12.

Heterogeneous synergistic catalysis by a palladium complex and an amine on a silica surface for acceleration of the Tsuji-Trost reaction.

Noda H, Motokura K, Miyaji A, Baba T.

Angew Chem Int Ed Engl. 2012 Aug 6;51(32):8017-20. doi: 10.1002/anie.201203066. Epub 2012 Jul 5. No abstract available.

PMID:
22767456
13.

Copper-catalyzed formic acid synthesis from CO2 with hydrosilanes and H2O.

Motokura K, Kashiwame D, Miyaji A, Baba T.

Org Lett. 2012 May 18;14(10):2642-5. doi: 10.1021/ol301034j. Epub 2012 Apr 27.

PMID:
22540994
14.

The substrate binding cavity of particulate methane monooxygenase from Methylosinus trichosporium OB3b expresses high enantioselectivity for n-butane and n-pentane oxidation to 2-alcohol.

Miyaji A, Miyoshi T, Motokura K, Baba T.

Biotechnol Lett. 2011 Nov;33(11):2241-6. doi: 10.1007/s10529-011-0688-3. Epub 2011 Jul 9.

PMID:
21744144
15.

Key role of the pore volume of zeolite for selective production of propylene from olefins.

Koyama TR, Hayashi Y, Horie H, Kawauchi S, Matsumoto A, Iwase Y, Sakamoto Y, Miyaji A, Motokura K, Baba T.

Phys Chem Chem Phys. 2010 Mar 20;12(11):2541-54. doi: 10.1039/b921927g. Epub 2010 Jan 25.

PMID:
20200730
16.

Heterogeneous allylsilylation of aromatic and aliphatic alkenes catalyzed by proton-exchanged montmorillonite.

Motokura K, Matsunaga S, Miyaji A, Sakamoto Y, Baba T.

Org Lett. 2010 Apr 2;12(7):1508-11. doi: 10.1021/ol100228t.

PMID:
20199059
17.

Influence of Si distribution in framework of SAPO-34 and its particle size on propylene selectivity and production rate for conversion of ethylene to propylene.

Iwase Y, Motokura K, Koyama TR, Miyaji A, Baba T.

Phys Chem Chem Phys. 2009 Oct 28;11(40):9268-77. doi: 10.1039/b911659a. Epub 2009 Aug 17.

PMID:
19812848
18.

Bifunctional heterogeneous catalysis of silica-alumina-supported tertiary amines with controlled acid-base interactions for efficient 1,4-addition reactions.

Motokura K, Tanaka S, Tada M, Iwasawa Y.

Chemistry. 2009 Oct 19;15(41):10871-9. doi: 10.1002/chem.200901380.

PMID:
19746475
19.

Layered materials with coexisting acidic and basic sites for catalytic one-pot reaction sequences.

Motokura K, Tada M, Iwasawa Y.

J Am Chem Soc. 2009 Jun 17;131(23):7944-5. doi: 10.1021/ja9012003.

PMID:
19456152
20.

Photoinduced reversible structural transformation and selective oxidation catalysis of unsaturated ruthenium complexes supported on SiO2.

Tada M, Akatsuka Y, Yang Y, Sasaki T, Kinoshita M, Motokura K, Iwasawa Y.

Angew Chem Int Ed Engl. 2008;47(48):9252-5. doi: 10.1002/anie.200803122. No abstract available.

PMID:
18942687

Supplemental Content

Loading ...
Support Center