Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 18

1.

Plasmonic Color Filter Array with High Color Purity for CMOS Image Sensors.

Miyamichi A, Ono A, Kagawa K, Yasutomi K, Kawahito S.

Sensors (Basel). 2019 Apr 12;19(8). pii: E1750. doi: 10.3390/s19081750.

2.

Super Field-of-View Lensless Camera by Coded Image Sensors.

Nakamura T, Kagawa K, Torashima S, Yamaguchi M.

Sensors (Basel). 2019 Mar 16;19(6). pii: E1329. doi: 10.3390/s19061329.

3.

Multi-band plasmonic color filters for visible-to-near-infrared image sensors.

Miyamichi A, Ono A, Kamehama H, Kagawa K, Yasutomi K, Kawahito S.

Opt Express. 2018 Sep 17;26(19):25178-25187. doi: 10.1364/OE.26.025178.

PMID:
30469623
4.

Widefield multifrequency fluorescence lifetime imaging using a two-tap complementary metal-oxide semiconductor camera with lateral electric field charge modulators.

Chen H, Ma N, Kagawa K, Kawahito S, Digman M, Gratton E.

J Biophotonics. 2019 May;12(5):e201800223. doi: 10.1002/jbio.201800223. Epub 2019 Feb 14.

PMID:
30421535
5.

A Silicon-on-Insulator-Based Dual-Gain Charge-Sensitive Pixel Detector for Low-Noise X-ray Imaging for Future Astronomical Satellite Missions.

Shrestha S, Kawahito S, Kamehama H, Nakanishi S, Yasutomi K, Kagawa K, Teranishi N, Takeda A, Tsuru TG, Kurachi I, Arai Y.

Sensors (Basel). 2018 Jun 1;18(6). pii: E1789. doi: 10.3390/s18061789.

6.

Multi-Aperture-Based Probabilistic Noise Reduction of Random Telegraph Signal Noise and Photon Shot Noise in Semi-Photon-Counting Complementary-Metal-Oxide-Semiconductor Image Sensor.

Ishida H, Kagawa K, Komuro T, Zhang B, Seo MW, Takasawa T, Yasutomi K, Kawahito S.

Sensors (Basel). 2018 Mar 26;18(4). pii: E977. doi: 10.3390/s18040977.

7.

The Dynamic Photometric Stereo Method Using a Multi-Tap CMOS Image Sensor.

Yoda T, Nagahara H, Taniguchi RI, Kagawa K, Yasutomi K, Kawahito S.

Sensors (Basel). 2018 Mar 5;18(3). pii: E786. doi: 10.3390/s18030786.

8.

Label-Free Biomedical Imaging Using High-Speed Lock-In Pixel Sensor for Stimulated Raman Scattering.

Mars K, Lioe X, Kawahito S, Yasutomi K, Kagawa K, Yamada T, Hashimoto M.

Sensors (Basel). 2017 Nov 9;17(11). pii: E2581. doi: 10.3390/s17112581.

9.

A Stimulated Raman Scattering CMOS Pixel Using a High-Speed Charge Modulator and Lock-in Amplifier.

Lioe de X, Mars K, Kawahito S, Yasutomi K, Kagawa K, Yamada T, Hashimoto M.

Sensors (Basel). 2016 Apr 13;16(4). pii: E532. doi: 10.3390/s16040532.

10.

Single-event transient imaging with an ultra-high-speed temporally compressive multi-aperture CMOS image sensor.

Mochizuki F, Kagawa K, Okihara S, Seo MW, Zhang B, Takasawa T, Yasutomi K, Kawahito S.

Opt Express. 2016 Feb 22;24(4):4155-76.

PMID:
26907065
11.

Evaluation of dual-wavelength excitation autofluorescence imaging of colorectal tumours with a high-sensitivity CMOS imager: a cross-sectional study.

Kominami Y, Yoshida S, Tanaka S, Miyaki R, Sanomura Y, Seo MW, Kagawa K, Kawahito S, Arimoto H, Yamada K, Chayama K.

BMC Gastroenterol. 2015 Sep 2;15:110. doi: 10.1186/s12876-015-0339-6.

12.

An indirect time-of-flight measurement technique with impulse photocurrent response for sub-millimeter range resolved imaging.

Yasutomi K, Usui T, Han SM, Takasawa T, Kagawa K, Kawahito S.

Opt Express. 2014 Aug 11;22(16):18904-13. doi: 10.1364/OE.22.018904.

PMID:
25320976
13.

RTS noise and dark current white defects reduction using selective averaging based on a multi-aperture system.

Zhang B, Kagawa K, Takasawa T, Seo MW, Yasutomi K, Kawahito S.

Sensors (Basel). 2014 Jan 16;14(1):1528-43. doi: 10.3390/s140101528.

14.

Multi-beam confocal microscopy based on a custom image sensor with focal-plane pinhole array effect.

Kagawa K, Seo MW, Yasutomi K, Terakawa S, Kawahito S.

Opt Express. 2013 Jan 28;21(2):1417-29. doi: 10.1364/OE.21.001417.

PMID:
23389123
15.

A CMOS optical/potential image sensor with 7.5μm pixel size for on-chip neural and DNA spot sensing.

Tokuda T, Ng D, Yamamoto A, Kagawa K, Nunoshita M, Ohta J.

Conf Proc IEEE Eng Med Biol Soc. 2005;7:7269-72.

PMID:
17281958
16.

Flexible and extendible neural stimulation/recording device based on cooperative multi-chip CMOS LSI architecture.

Tokuda T, Pan YL, Uehara A, Kagawa K, Ohta J, Nunoshita M.

Conf Proc IEEE Eng Med Biol Soc. 2004;6:4322-5.

PMID:
17271261
17.

Silicon LSI-based smart stimulators for retinal prosthesis.

Ohta J, Tokuda T, Kagawa K, Furumiya T, Uehara A, Terasawa Y, Ozawa M, Fujikado T, Tano Y.

IEEE Eng Med Biol Mag. 2006 Sep-Oct;25(5):47-59. Review. No abstract available.

PMID:
17020199
18.

Functional verification of pulse frequency modulation-based image sensor for retinal prosthesis by in vitro electrophysiological experiments using frog retina.

Furumiya T, Ng DC, Yasuoka K, Kagawa K, Tokuda T, Nunoshita M, Ohta J.

Biosens Bioelectron. 2006 Jan 15;21(7):1059-68.

PMID:
15886001

Supplemental Content

Loading ...
Support Center