Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 13

1.

Antibacterial activity of rhodomyrtone on Clostridium difficile vegetative cells and spores in vitro.

Srisuwan S, Mackin KE, Hocking D, Lyras D, Bennett-Wood V, Voravuthikunchai SP, Robins-Browne RM.

Int J Antimicrob Agents. 2018 Nov;52(5):724-729. doi: 10.1016/j.ijantimicag.2018.08.014. Epub 2018 Aug 24.

PMID:
30145248
2.

Bovine antibodies targeting primary and recurrent Clostridium difficile disease are a potent antibiotic alternative.

Hutton ML, Cunningham BA, Mackin KE, Lyon SA, James ML, Rood JI, Lyras D.

Sci Rep. 2017 Jun 16;7(1):3665. doi: 10.1038/s41598-017-03982-5.

3.

Translocation and dissemination of commensal bacteria in post-stroke infection.

Stanley D, Mason LJ, Mackin KE, Srikhanta YN, Lyras D, Prakash MD, Nurgali K, Venegas A, Hill MD, Moore RJ, Wong CH.

Nat Med. 2016 Nov;22(11):1277-1284. doi: 10.1038/nm.4194. Epub 2016 Oct 3.

PMID:
27694934
4.

Disruption of the Gut Microbiome: Clostridium difficile Infection and the Threat of Antibiotic Resistance.

Johanesen PA, Mackin KE, Hutton ML, Awad MM, Larcombe S, Amy JM, Lyras D.

Genes (Basel). 2015 Dec 21;6(4):1347-60. doi: 10.3390/genes6041347. Review.

5.

Molecular characterization and antimicrobial susceptibilities of Clostridium difficile clinical isolates from Victoria, Australia.

Mackin KE, Elliott B, Kotsanas D, Howden BP, Carter GP, Korman TM, Riley TV, Rood JI, Jenkin GA, Lyras D.

Anaerobe. 2015 Aug;34:80-3. doi: 10.1016/j.anaerobe.2015.05.001. Epub 2015 May 2.

PMID:
25944720
6.

Emergence of toxin A-negative, toxin B-positive Clostridium difficile strains: epidemiological and clinical considerations.

King AM, Mackin KE, Lyras D.

Future Microbiol. 2015;10(1):1-4. doi: 10.2217/fmb.14.115. No abstract available.

7.

Emergence of a ribotype 244 strain of Clostridium difficile associated with severe disease and related to the epidemic ribotype 027 strain.

Lim SK, Stuart RL, Mackin KE, Carter GP, Kotsanas D, Francis MJ, Easton M, Dimovski K, Elliott B, Riley TV, Hogg G, Paul E, Korman TM, Seemann T, Stinear TP, Lyras D, Jenkin GA.

Clin Infect Dis. 2014 Jun;58(12):1723-30. doi: 10.1093/cid/ciu203. Epub 2014 Apr 4.

8.

Utility of the clostridial site-specific recombinase TnpX to clone toxic-product-encoding genes and selectively remove genomic DNA fragments.

Adams V, Bantwal R, Stevenson L, Cheung JK, Awad MM, Nicholson J, Carter GP, Mackin KE, Rood JI, Lyras D.

Appl Environ Microbiol. 2014 Jun;80(12):3597-3603.

9.

Small animal models for the study of Clostridium difficile disease pathogenesis.

Hutton ML, Mackin KE, Chakravorty A, Lyras D.

FEMS Microbiol Lett. 2014 Mar;352(2):140-9. doi: 10.1111/1574-6968.12367. Epub 2014 Jan 7. Review.

10.

Spo0A differentially regulates toxin production in evolutionarily diverse strains of Clostridium difficile.

Mackin KE, Carter GP, Howarth P, Rood JI, Lyras D.

PLoS One. 2013 Nov 13;8(11):e79666. doi: 10.1371/journal.pone.0079666. eCollection 2013.

11.

Novel molecular type of Clostridium difficile in neonatal pigs, Western Australia.

Squire MM, Carter GP, Mackin KE, Chakravorty A, Norén T, Elliott B, Lyras D, Riley TV.

Emerg Infect Dis. 2013 May;19(5):790-2. doi: 10.3201/eid1905.121062.

12.

The anti-sigma factor TcdC modulates hypervirulence in an epidemic BI/NAP1/027 clinical isolate of Clostridium difficile.

Carter GP, Douce GR, Govind R, Howarth PM, Mackin KE, Spencer J, Buckley AM, Antunes A, Kotsanas D, Jenkin GA, Dupuy B, Rood JI, Lyras D.

PLoS Pathog. 2011 Oct;7(10):e1002317. doi: 10.1371/journal.ppat.1002317. Epub 2011 Oct 13.

13.

Binary toxin production in Clostridium difficile is regulated by CdtR, a LytTR family response regulator.

Carter GP, Lyras D, Allen DL, Mackin KE, Howarth PM, O'Connor JR, Rood JI.

J Bacteriol. 2007 Oct;189(20):7290-301. Epub 2007 Aug 10.

Supplemental Content

Loading ...
Support Center