Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 13

1.

2-Hydroxy-N-phenylbenzamides and Their Esters Inhibit Acetylcholinesterase and Butyrylcholinesterase.

Krátký M, Štěpánková Š, Houngbedji NH, Vosátka R, Vorčáková K, Vinšová J.

Biomolecules. 2019 Nov 5;9(11). pii: E698. doi: 10.3390/biom9110698.

2.

SAR-mediated Similarity Assessment of the Property Profile for New, Silicon-Based AChE/BChE Inhibitors.

Bak A, Pizova H, Kozik V, Vorcakova K, Kos J, Treml J, Odehnalova K, Oravec M, Imramovsky A, Bobal P, Smolinski A, Trávníček Z, Jampilek J.

Int J Mol Sci. 2019 Oct 29;20(21). pii: E5385. doi: 10.3390/ijms20215385.

3.

Derivatives of the β-Crinane Amaryllidaceae Alkaloid Haemanthamine as Multi-Target Directed Ligands for Alzheimer's Disease.

Kohelová E, Peřinová R, Maafi N, Korábečný J, Hulcová D, Maříková J, Kučera T, Martínez González L, Hrabinova M, Vorčáková K, Nováková L, De Simone A, Havelek R, Cahlíková L.

Molecules. 2019 Apr 3;24(7). pii: E1307. doi: 10.3390/molecules24071307.

4.

Investigation of salicylanilide and 4-chlorophenol-based N-monosubstituted carbamates as potential inhibitors of acetyl- and butyrylcholinesterase.

Krátký M, Štěpánková Š, Vorčáková K, Vinšová J.

Bioorg Chem. 2018 Oct;80:668-673. doi: 10.1016/j.bioorg.2018.07.017. Epub 2018 Jul 17.

PMID:
30059892
5.

Synthesis and characterization of new inhibitors of cholinesterases based on N-phenylcarbamates: In vitro study of inhibitory effect, type of inhibition, lipophilicity and molecular docking.

Vorčáková K, Májeková M, Horáková E, Drabina P, Sedlák M, Štěpánková Š.

Bioorg Chem. 2018 Aug;78:280-289. doi: 10.1016/j.bioorg.2018.03.012. Epub 2018 Mar 28.

PMID:
29621640
6.

Synthesis of readily available fluorophenylalanine derivatives and investigation of their biological activity.

Krátký M, Štěpánková Š, Vorčáková K, Navrátilová L, Trejtnar F, Stolaříková J, Vinšová J.

Bioorg Chem. 2017 Apr;71:244-256. doi: 10.1016/j.bioorg.2017.02.010. Epub 2017 Feb 21.

PMID:
28245905
7.

Synthesis, characterization and in vitro evaluation of substituted N-(2-phenylcyclopropyl)carbamates as acetyl- and butyrylcholinesterase inhibitors.

Horáková E, Drabina P, Brož B, Štěpánková Š, Vorčáková K, Královec K, Havelek R, Sedlák M.

J Enzyme Inhib Med Chem. 2016;31(sup3):173-179. Epub 2016 Aug 1.

PMID:
27476673
8.

Synthesis and in vitro evaluation of novel rhodanine derivatives as potential cholinesterase inhibitors.

Krátký M, Štěpánková Š, Vorčáková K, Vinšová J.

Bioorg Chem. 2016 Oct;68:23-9. doi: 10.1016/j.bioorg.2016.07.004. Epub 2016 Jul 6.

PMID:
27428597
9.

Cholinesterase-based biosensors.

Štěpánková Š, Vorčáková K.

J Enzyme Inhib Med Chem. 2016;31(sup3):180-193. Epub 2016 Jul 12. Review.

PMID:
27405024
10.

Novel Cholinesterase Inhibitors Based on O-Aromatic N,N-Disubstituted Carbamates and Thiocarbamates.

Krátký M, Štěpánková Š, Vorčáková K, Švarcová M, Vinšová J.

Molecules. 2016 Feb 11;21(2). pii: E191. doi: 10.3390/molecules21020191.

11.

Salicylanilide diethyl phosphates as cholinesterases inhibitors.

Krátký M, Štěpánková Š, Vorčáková K, Vinšová J.

Bioorg Chem. 2015 Feb;58:48-52. doi: 10.1016/j.bioorg.2014.11.005. Epub 2014 Nov 13.

PMID:
25462625
12.

Diethyl 2-(phenylcarbamoyl)phenyl phosphorothioates: synthesis, antimycobacterial activity and cholinesterase inhibition.

Vinšová J, Krátký M, Komlóová M, Dadapeer E, Stěpánková S, Vorčáková K, Stolaříková J.

Molecules. 2014 May 30;19(6):7152-68. doi: 10.3390/molecules19067152.

13.

Synthesis and in vitro evaluation of new derivatives of 2-substituted-6-fluorobenzo[d]thiazoles as cholinesterase inhibitors.

Imramovský A, Pejchal V, Štěpánková Š, Vorčáková K, Jampílek J, Vančo J, Šimůnek P, Královec K, Brůčková L, Mandíková J, Trejtnar F.

Bioorg Med Chem. 2013 Apr 1;21(7):1735-48. doi: 10.1016/j.bmc.2013.01.052. Epub 2013 Feb 1.

PMID:
23462716

Supplemental Content

Loading ...
Support Center