Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 27

1.

Phenanthrenes from Juncus Compressus Jacq. with Promising Antiproliferative and Anti-HSV-2 Activities.

Bús C, Kúsz N, Jakab G, Senobar Tahaei SA, Zupkó I, Endrész V, Bogdanov A, Burián K, Csupor-Löffler B, Hohmann J, Vasas A.

Molecules. 2018 Aug 20;23(8). pii: E2085. doi: 10.3390/molecules23082085.

2.

Chlamydia pneumoniae Infection Exacerbates Atherosclerosis in ApoB100only/LDLR-/- Mouse Strain.

Lantos I, Endrész V, Virok DP, Szabó A, Lu X, Mosolygó T, Burián K.

Biomed Res Int. 2018 Mar 25;2018:8325915. doi: 10.1155/2018/8325915. eCollection 2018.

3.

Growth characteristics of Chlamydia trachomatis in human intestinal epithelial Caco-2 cells.

Lantos I, Virok DP, Mosolygó T, Rázga Z, Burián K, Endrész V.

Pathog Dis. 2018 Apr 1;76(3). doi: 10.1093/femspd/fty024.

PMID:
29635314
4.

Bioactive Segetane, Ingenane, and Jatrophane Diterpenes from Euphorbia taurinensis.

Rédei D, Kúsz N, Sátori G, Kincses A, Spengler G, Burián K, Barina Z, Hohmann J.

Planta Med. 2018 Jul;84(9-10):729-735. doi: 10.1055/a-0589-0525. Epub 2018 Mar 19.

PMID:
29554708
5.

N-acetyl-cysteine increases the replication of Chlamydia pneumoniae and prolongs the clearance of the pathogen from mice.

Kókai D, Mosolygó T, Virók DP, Endrész V, Burián K.

J Med Microbiol. 2018 Mar 9. doi: 10.1099/jmm.0.000716. [Epub ahead of print]

PMID:
29521616
6.

A direct quantitative PCR-based measurement of herpes simplex virus susceptibility to antiviral drugs and neutralizing antibodies.

Virók DP, Eszik I, Mosolygó T, Önder K, Endrész V, Burián K.

J Virol Methods. 2017 Apr;242:46-52. doi: 10.1016/j.jviromet.2017.01.007. Epub 2017 Jan 16.

PMID:
28093274
7.

High dynamic range detection of Chlamydia trachomatis growth by direct quantitative PCR of the infected cells.

Eszik I, Lantos I, Önder K, Somogyvári F, Burián K, Endrész V, Virok DP.

J Microbiol Methods. 2016 Jan;120:15-22. doi: 10.1016/j.mimet.2015.11.010. Epub 2015 Nov 11.

PMID:
26578244
8.

Efflux pump inhibiting properties of racemic phenothiazine derivatives and their enantiomers on the bacterial AcrAB-TolC system.

Spengler G, Takács D, Horváth A, Szabó AM, Riedl Z, Hajós G, Molnár J, Burián K.

In Vivo. 2014 Nov-Dec;28(6):1071-5.

PMID:
25398801
9.

Protection promoted by pGP3 or pGP4 against Chlamydia muridarum is mediated by CD4(+) cells in C57BL/6N mice.

Mosolygó T, Szabó AM, Balogh EP, Faludi I, Virók DP, Endrész V, Samu A, Krenács T, Burián K.

Vaccine. 2014 Sep 8;32(40):5228-33. doi: 10.1016/j.vaccine.2014.07.039. Epub 2014 Jul 29.

PMID:
25077421
10.

Anti-chlamydial effect of plant peptides.

Balogh EP, Mosolygó T, Tiricz H, Szabó AM, Karai A, Kerekes F, Virók DP, Kondorosi E, Burián K.

Acta Microbiol Immunol Hung. 2014 Jun;61(2):229-39. doi: 10.1556/AMicr.61.2014.2.12.

PMID:
24939689
11.

Expression of Chlamydia muridarum plasmid genes and immunogenicity of pGP3 and pGP4 in different mouse strains.

Mosolygó T, Faludi I, Balogh EP, Szabó ÁM, Karai A, Kerekes F, Virók DP, Endrész V, Burián K.

Int J Med Microbiol. 2014 May;304(3-4):476-83. doi: 10.1016/j.ijmm.2014.02.005. Epub 2014 Feb 19.

PMID:
24631212
12.

IL-17E production is elevated in the lungs of Balb/c mice in the later stages of Chlamydia muridarum infection and re-infection.

Mosolygó T, Spengler G, Endrész V, Laczi K, Perei K, Burián K.

In Vivo. 2013 Nov-Dec;27(6):787-92.

PMID:
24292583
13.

Application of DNA chip scanning technology for automatic detection of Chlamydia trachomatis and Chlamydia pneumoniae inclusions.

Bogdanov A, Endrész V, Urbán S, Lantos I, Deák J, Burián K, Önder K, Ayaydin F, Balázs P, Virok DP.

Antimicrob Agents Chemother. 2014;58(1):405-13. doi: 10.1128/AAC.01400-13. Epub 2013 Nov 4.

14.

Chlamydophila pneumoniae re-infection triggers the production of IL-17A and IL-17E, important regulators of airway inflammation.

Mosolygó T, Korcsik J, Balogh EP, Faludi I, Virók DP, Endrész V, Burián K.

Inflamm Res. 2013 May;62(5):451-60. doi: 10.1007/s00011-013-0596-1. Epub 2013 Feb 6.

PMID:
23385305
15.

Recombinant Mycobacterium smegmatis vaccine candidates.

Faludi I, Szabó AM, Burián K, Endrész V, Miczák A.

Acta Microbiol Immunol Hung. 2011 Mar;58(1):13-22. doi: 10.1556/AMicr.58.2011.1.2.

PMID:
21450551
16.

Chlamydophila pneumoniae induces production of the defensin-like MIG/CXCL9, which has in vitro antichlamydial activity.

Balogh EP, Faludi I, Virók DP, Endrész V, Burián K.

Int J Med Microbiol. 2011 Mar;301(3):252-9. doi: 10.1016/j.ijmm.2010.08.020. Epub 2010 Nov 4.

PMID:
21056004
17.

Transcriptome analysis indicates an enhanced activation of adaptive and innate immunity by chlamydia-infected murine epithelial cells treated with interferon γ.

Burian K, Endresz V, Deak J, Kormanyos Z, Pal A, Nelson D, Virok D.

J Infect Dis. 2010 Nov 1;202(9):1405-14. doi: 10.1086/656526.

18.

Immunization with a combination of ApoB and HSP60 epitopes significantly reduces early atherosclerotic lesion in Apobtm2SgyLdlrtm1Her/J mice.

Lu X, Chen D, Endresz V, Xia M, Faludi I, Burian K, Szabo A, Csanadi A, Miczak A, Gonczol E, Kakkar V.

Atherosclerosis. 2010 Oct;212(2):472-80. doi: 10.1016/j.atherosclerosis.2010.06.007. Epub 2010 Jun 11.

PMID:
20609438
19.

Production and purification of low calcium response protein H of Chlamydophila pneumoniae.

Faludi I, Csanádi A, Szabó AM, Burián K, Endrész V, Miczák A.

Acta Microbiol Immunol Hung. 2009 Dec;56(4):389-97. doi: 10.1556/AMicr.56.2009.4.8.

PMID:
20038490
20.

Adjuvant modulation of the immune response of mice against the LcrE protein of Chlamydophila pneumoniae.

Faludi I, Burian K, Csanadi A, Miczak A, Lu X, Kakkar VV, Gonczol E, Endresz V.

Int J Med Microbiol. 2009 Nov;299(7):520-8. doi: 10.1016/j.ijmm.2009.04.002. Epub 2009 May 17.

PMID:
19451031

Supplemental Content

Loading ...
Support Center