Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 71

1.

Enhanced Osseointegration Capability of Poly(ether ether ketone) via Combined Phosphate and Calcium Surface-Functionalization.

Sunarso, Tsuchiya A, Toita R, Tsuru K, Ishikawa K.

Int J Mol Sci. 2019 Dec 27;21(1). pii: E198. doi: 10.3390/ijms21010198.

2.

Fabrication of porous carbonate apatite granules using microfiber and its histological evaluations in rabbit calvarial bone defects.

Akita K, Fukuda N, Kamada K, Kudoh K, Kurio N, Tsuru K, Ishikawa K, Miyamoto Y.

J Biomed Mater Res A. 2020 Mar;108(3):709-721. doi: 10.1002/jbm.a.36850. Epub 2019 Dec 5.

PMID:
31756282
3.

Characterization and thermal decomposition of synthetic carbonate apatite powders prepared using different alkali metal salts.

Maruta M, Arahira T, Tsuru K, Matsuya S.

Dent Mater J. 2019 Oct 2;38(5):750-755. doi: 10.4012/dmj.2018-213. Epub 2019 Jun 29.

4.

Fabrication of carbonate apatite honeycomb and its tissue response.

Ishikawa K, Munar ML, Tsuru K, Miyamoto Y.

J Biomed Mater Res A. 2019 May;107(5):1014-1020. doi: 10.1002/jbm.a.36640. Epub 2019 Feb 23.

PMID:
30706693
5.

Synergistic effect of surface phosphorylation and micro-roughness on enhanced osseointegration ability of poly(ether ether ketone) in the rabbit tibia.

Fukuda N, Kanazawa M, Tsuru K, Tsuchiya A, Sunarso, Toita R, Mori Y, Nakashima Y, Ishikawa K.

Sci Rep. 2018 Nov 15;8(1):16887. doi: 10.1038/s41598-018-35313-7.

6.

Fabrication of self-setting β-TCP granular cement using β-TCP granules and sodium hydrogen sulfate solution.

Eddy, Tsuchiya A, Tsuru K, Ishikawa K.

J Biomater Appl. 2018 Nov;33(5):630-636. doi: 10.1177/0885328218808015. Epub 2018 Oct 30.

PMID:
30376757
7.

Physical and Histological Comparison of Hydroxyapatite, Carbonate Apatite, and β-Tricalcium Phosphate Bone Substitutes.

Ishikawa K, Miyamoto Y, Tsuchiya A, Hayashi K, Tsuru K, Ohe G.

Materials (Basel). 2018 Oct 16;11(10). pii: E1993. doi: 10.3390/ma11101993.

8.

Surface plasma treatment and phosphorylation enhance the biological performance of poly(ether ether ketone).

Fukuda N, Tsuchiya A, Sunarso, Toita R, Tsuru K, Mori Y, Ishikawa K.

Colloids Surf B Biointerfaces. 2019 Jan 1;173:36-42. doi: 10.1016/j.colsurfb.2018.09.032. Epub 2018 Sep 14.

PMID:
30266018
9.

Effect of setting atmosphere on apatite cement resorption: An in vitro and in vivo study.

Cahyanto A, Tsuru K, Ishikawa K.

J Mech Behav Biomed Mater. 2018 Dec;88:463-469. doi: 10.1016/j.jmbbm.2018.08.021. Epub 2018 Aug 23.

PMID:
30218975
10.

Fabrication and evaluation of carbonate apatite-coated calcium carbonate bone substitutes for bone tissue engineering.

Fujioka-Kobayashi M, Tsuru K, Nagai H, Fujisawa K, Kudoh T, Ohe G, Ishikawa K, Miyamoto Y.

J Tissue Eng Regen Med. 2018 Oct;12(10):2077-2087. doi: 10.1002/term.2742. Epub 2018 Aug 29.

PMID:
30058260
11.

Feasibility evaluation of low-crystallinity β-tricalcium phosphate blocks as a bone substitute fabricated by a dissolution-precipitation reaction from α-tricalcium phosphate blocks.

Tripathi G, Sugiura Y, Kareiva A, Garskaite E, Tsuru K, Ishikawa K.

J Biomater Appl. 2018 Aug;33(2):259-270. doi: 10.1177/0885328218788255. Epub 2018 Jul 22.

PMID:
30033849
12.

Compositional and histological comparison of carbonate apatite fabricated by dissolution-precipitation reaction and Bio-Oss®.

Fujisawa K, Akita K, Fukuda N, Kamada K, Kudoh T, Ohe G, Mano T, Tsuru K, Ishikawa K, Miyamoto Y.

J Mater Sci Mater Med. 2018 Jul 21;29(8):121. doi: 10.1007/s10856-018-6129-2.

PMID:
30032409
13.

In vivo stability evaluation of Mg substituted low crystallinity ß-tricalcium phosphate granules fabricated through dissolution-precipitation reaction for bone regeneration.

Tripathi G, Sugiura Y, Tsuru K, Ishikawa K.

Biomed Mater. 2018 Aug 15;13(6):065002. doi: 10.1088/1748-605X/aad385.

PMID:
30010092
14.

Effect of micro-roughening of poly(ether ether ketone) on bone marrow derived stem cell and macrophage responses, and osseointegration.

Sunarso, Tsuchiya A, Fukuda N, Toita R, Tsuru K, Ishikawa K.

J Biomater Sci Polym Ed. 2018 Aug;29(12):1375-1388. doi: 10.1080/09205063.2018.1461448. Epub 2018 Apr 25.

PMID:
29661104
15.

Fabrication and evaluation of interconnected porous carbonate apatite from alpha tricalcium phosphate spheres.

Ishikawa K, Arifta TI, Hayashi K, Tsuru K.

J Biomed Mater Res B Appl Biomater. 2019 Feb;107(2):269-277. doi: 10.1002/jbm.b.34117. Epub 2018 Mar 26.

PMID:
29577584
16.

Fabrication of interconnected porous β-tricalcium phosphate (β-TCP) based on a setting reaction of β-TCP granules with HNO3 followed by heat treatment.

Ishikawa K, Putri TS, Tsuchiya A, Tanaka K, Tsuru K.

J Biomed Mater Res A. 2018 Mar;106(3):797-804. doi: 10.1002/jbm.a.36285. Epub 2017 Nov 27.

PMID:
29105999
17.

Fabrication and Physical Evaluation of Gelatin-Coated Carbonate Apatite Foam.

Hara K, Fujisawa K, Nagai H, Takamaru N, Ohe G, Tsuru K, Ishikawa K, Miyamoto Y.

Materials (Basel). 2016 Aug 23;9(9). pii: E711. doi: 10.3390/ma9090711.

18.

Fabrication of Carbonate Apatite Block through a Dissolution-Precipitation Reaction Using Calcium Hydrogen Phosphate Dihydrate Block as a Precursor.

Tsuru K, Yoshimoto A, Kanazawa M, Sugiura Y, Nakashima Y, Ishikawa K.

Materials (Basel). 2017 Mar 31;10(4). pii: E374. doi: 10.3390/ma10040374.

19.

"Fabrication of arbitrarily shaped carbonate apatite foam based on the interlocking process of dicalcium hydrogen phosphate dihydrate".

Sugiura Y, Tsuru K, Ishikawa K.

J Mater Sci Mater Med. 2017 Aug;28(8):122. doi: 10.1007/s10856-017-5937-0. Epub 2017 Jul 8.

PMID:
28689353
20.

Evaluation of carbonate apatite blocks fabricated from dicalcium phosphate dihydrate blocks for reconstruction of rabbit femoral and tibial defects.

Kanazawa M, Tsuru K, Fukuda N, Sakemi Y, Nakashima Y, Ishikawa K.

J Mater Sci Mater Med. 2017 Jun;28(6):85. doi: 10.1007/s10856-017-5896-5. Epub 2017 Apr 29.

PMID:
28456893

Supplemental Content

Loading ...
Support Center