Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 22

1.

NosL is a dedicated copper chaperone for assembly of the CuZ center of nitrous oxide reductase.

Bennett SP, Soriano-Laguna MJ, Bradley JM, Svistunenko DA, Richardson DJ, Gates AJ, Le Brun NE.

Chem Sci. 2019 Apr 18;10(19):4985-4993. doi: 10.1039/c9sc01053j. eCollection 2019 May 21.

2.

Reaction of O2 with a diiron protein generates a mixed-valent Fe2+/Fe3+ center and peroxide.

Bradley JM, Svistunenko DA, Pullin J, Hill N, Stuart RK, Palenik B, Wilson MT, Hemmings AM, Moore GR, Le Brun NE.

Proc Natl Acad Sci U S A. 2019 Feb 5;116(6):2058-2067. doi: 10.1073/pnas.1809913116. Epub 2019 Jan 18.

3.

Electron transfer ferredoxins with unusual cluster binding motifs support secondary metabolism in many bacteria.

Child SA, Bradley JM, Pukala TL, Svistunenko DA, Le Brun NE, Bell SG.

Chem Sci. 2018 Aug 23;9(41):7948-7957. doi: 10.1039/c8sc01286e. eCollection 2018 Nov 7.

4.

Tyr25, Tyr58 and Trp133 of Escherichia coli bacterioferritin transfer electrons between iron in the central cavity and the ferroxidase centre.

Bradley JM, Svistunenko DA, Moore GR, Le Brun NE.

Metallomics. 2017 Oct 18;9(10):1421-1428. doi: 10.1039/c7mt00187h.

PMID:
28914315
5.

Diversity of Fe2+ entry and oxidation in ferritins.

Bradley JM, Moore GR, Le Brun NE.

Curr Opin Chem Biol. 2017 Apr;37:122-128. doi: 10.1016/j.cbpa.2017.02.027. Epub 2017 Mar 15. Review.

PMID:
28314217
6.

Kinetic analysis of copper transfer from a chaperone to its target protein mediated by complex formation.

Kay KL, Zhou L, Tenori L, Bradley JM, Singleton C, Kihlken MA, Ciofi-Baffoni S, Le Brun NE.

Chem Commun (Camb). 2017 Jan 24;53(8):1397-1400. doi: 10.1039/c6cc08966f.

PMID:
28078344
7.

Analysis of Heme Iron Coordination in DGCR8: The Heme-Binding Component of the Microprocessor Complex.

Girvan HM, Bradley JM, Cheesman MR, Kincaid JR, Liu Y, Czarnecki K, Fisher K, Leys D, Rigby SE, Munro AW.

Biochemistry. 2016 Sep 13;55(36):5073-83. doi: 10.1021/acs.biochem.6b00204. Epub 2016 Sep 1.

PMID:
27546061
8.

Three Aromatic Residues are Required for Electron Transfer during Iron Mineralization in Bacterioferritin.

Bradley JM, Svistunenko DA, Lawson TL, Hemmings AM, Moore GR, Le Brun NE.

Angew Chem Weinheim Bergstr Ger. 2015 Dec 1;127(49):14976-14980. Epub 2015 Oct 16.

9.

Ferritins: furnishing proteins with iron.

Bradley JM, Le Brun NE, Moore GR.

J Biol Inorg Chem. 2016 Mar;21(1):13-28. doi: 10.1007/s00775-016-1336-0. Epub 2016 Jan 29. Review.

10.

Three Aromatic Residues are Required for Electron Transfer during Iron Mineralization in Bacterioferritin.

Bradley JM, Svistunenko DA, Lawson TL, Hemmings AM, Moore GR, Le Brun NE.

Angew Chem Int Ed Engl. 2015 Dec 1;54(49):14763-7. doi: 10.1002/anie.201507486. Epub 2015 Oct 16.

11.

A Diatom Ferritin Optimized for Iron Oxidation but Not Iron Storage.

Pfaffen S, Bradley JM, Abdulqadir R, Firme MR, Moore GR, Le Brun NE, Murphy ME.

J Biol Chem. 2015 Nov 20;290(47):28416-27. doi: 10.1074/jbc.M115.669713. Epub 2015 Sep 22.

12.

Optimization and Control of Cyber-Physical Vehicle Systems.

Bradley JM, Atkins EM.

Sensors (Basel). 2015 Sep 11;15(9):23020-49. doi: 10.3390/s150923020.

13.

Fe(2+) substrate transport through ferritin protein cage ion channels influences enzyme activity and biomineralization.

Behera RK, Torres R, Tosha T, Bradley JM, Goulding CW, Theil EC.

J Biol Inorg Chem. 2015 Sep;20(6):957-69. doi: 10.1007/s00775-015-1279-x. Epub 2015 Jul 23.

14.

Mechanisms of iron mineralization in ferritins: one size does not fit all.

Bradley JM, Moore GR, Le Brun NE.

J Biol Inorg Chem. 2014 Aug;19(6):775-85. doi: 10.1007/s00775-014-1136-3. Epub 2014 Apr 19. Review.

PMID:
24748222
15.

Electrode assemblies composed of redox cascades from microbial respiratory electron transfer chains.

Gates AJ, Marritt SJ, Bradley JM, Shi L, McMillan DG, Jeuken LJ, Richardson DJ, Butt JN.

Biochem Soc Trans. 2013 Oct;41(5):1249-53. doi: 10.1042/BST20130147.

PMID:
24059515
16.

Redox and chemical activities of the hemes in the sulfur oxidation pathway enzyme SoxAX.

Bradley JM, Marritt SJ, Kihlken MA, Haynes K, Hemmings AM, Berks BC, Cheesman MR, Butt JN.

J Biol Chem. 2012 Nov 23;287(48):40350-9. doi: 10.1074/jbc.M112.396192. Epub 2012 Oct 11.

17.

Unusual spectroscopic and ligand binding properties of the cytochrome P450-flavodoxin fusion enzyme XplA.

Bui SH, McLean KJ, Cheesman MR, Bradley JM, Rigby SE, Levy CW, Leys D, Munro AW.

J Biol Chem. 2012 Jun 1;287(23):19699-714. doi: 10.1074/jbc.M111.319202. Epub 2012 Apr 12.

18.

Probing a complex of cytochrome c and cardiolipin by magnetic circular dichroism spectroscopy: implications for the initial events in apoptosis.

Bradley JM, Silkstone G, Wilson MT, Cheesman MR, Butt JN.

J Am Chem Soc. 2011 Dec 14;133(49):19676-9. doi: 10.1021/ja209144h. Epub 2011 Nov 18.

PMID:
22081937
19.

Electrochemical titrations and reaction time courses monitored in situ by magnetic circular dichroism spectroscopy.

Bradley JM, Butt JN, Cheesman MR.

Anal Biochem. 2011 Dec 15;419(2):110-6. doi: 10.1016/j.ab.2011.07.030. Epub 2011 Jul 30.

PMID:
21864495
20.

MCD spectroscopy of hexanuclear Mn(III) salicylaldoxime single-molecule magnets.

Bradley JM, Thomson AJ, Inglis R, Milios CJ, Brechin EK, Piligkos S.

Dalton Trans. 2010 Nov 7;39(41):9904-11. doi: 10.1039/c0dt00634c. Epub 2010 Aug 19.

PMID:
20721404

Supplemental Content

Loading ...
Support Center