Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 39

1.

The Loop of the TPR1 Subdomain of Phi29 DNA Polymerase Plays a Pivotal Role in Primer-Terminus Stabilization at the Polymerization Active Site.

Del Prado A, Santos E, Lázaro JM, Salas M, de Vega M.

Biomolecules. 2019 Oct 24;9(11). pii: E648. doi: 10.3390/biom9110648.

2.

Insights into the Determination of the Templating Nucleotide at the Initiation of φ29 DNA Replication.

del Prado A, Lázaro JM, Longás E, Villar L, de Vega M, Salas M.

J Biol Chem. 2015 Nov 6;290(45):27138-45. doi: 10.1074/jbc.M115.682278. Epub 2015 Sep 23.

3.

Mechano-chemical kinetics of DNA replication: identification of the translocation step of a replicative DNA polymerase.

Morin JA, Cao FJ, Lázaro JM, Arias-Gonzalez JR, Valpuesta JM, Carrascosa JL, Salas M, Ibarra B.

Nucleic Acids Res. 2015 Apr 20;43(7):3643-52. doi: 10.1093/nar/gkv204. Epub 2015 Mar 23.

4.

Kinetic mechanisms governing stable ribonucleotide incorporation in individual DNA polymerase complexes.

Dahl JM, Wang H, Lázaro JM, Salas M, Lieberman KR.

Biochemistry. 2014 Dec 30;53(51):8061-76. doi: 10.1021/bi501216a. Epub 2014 Dec 18.

5.

Dynamics of translocation and substrate binding in individual complexes formed with active site mutants of {phi}29 DNA polymerase.

Dahl JM, Wang H, Lázaro JM, Salas M, Lieberman KR.

J Biol Chem. 2014 Mar 7;289(10):6350-61. doi: 10.1074/jbc.M113.535666. Epub 2014 Jan 24.

6.

Role of the LEXE motif of protein-primed DNA polymerases in the interaction with the incoming nucleotide.

Santos E, Lázaro JM, Pérez-Arnaiz P, Salas M, de Vega M.

J Biol Chem. 2014 Jan 31;289(5):2888-98. doi: 10.1074/jbc.M113.530980. Epub 2013 Dec 9.

7.

Dual role of φ29 DNA polymerase Lys529 in stabilisation of the DNA priming-terminus and the terminal protein-priming residue at the polymerisation site.

del Prado A, Lázaro JM, Villar L, Salas M, de Vega M.

PLoS One. 2013 Sep 4;8(9):e72765. doi: 10.1371/journal.pone.0072765. eCollection 2013.

8.

Crystal structure and functional insights into uracil-DNA glycosylase inhibition by phage Φ29 DNA mimic protein p56.

Baños-Sanz JI, Mojardín L, Sanz-Aparicio J, Lázaro JM, Villar L, Serrano-Heras G, González B, Salas M.

Nucleic Acids Res. 2013 Jul;41(13):6761-73. doi: 10.1093/nar/gkt395. Epub 2013 May 13.

9.

Active DNA unwinding dynamics during processive DNA replication.

Morin JA, Cao FJ, Lázaro JM, Arias-Gonzalez JR, Valpuesta JM, Carrascosa JL, Salas M, Ibarra B.

Proc Natl Acad Sci U S A. 2012 May 22;109(21):8115-20. doi: 10.1073/pnas.1204759109. Epub 2012 May 9.

10.

Novel dimeric structure of phage φ29-encoded protein p56: insights into uracil-DNA glycosylase inhibition.

Asensio JL, Pérez-Lago L, Lázaro JM, González C, Serrano-Heras G, Salas M.

Nucleic Acids Res. 2011 Dec;39(22):9779-88. doi: 10.1093/nar/gkr667. Epub 2011 Sep 2.

11.

Characterization of Bacillus subtilis uracil-DNA glycosylase and its inhibition by phage φ29 protein p56.

Pérez-Lago L, Serrano-Heras G, Baños B, Lázaro JM, Alcorlo M, Villar L, Salas M.

Mol Microbiol. 2011 Jun;80(6):1657-66. doi: 10.1111/j.1365-2958.2011.07675.x. Epub 2011 May 12.

12.

Improvement of φ29 DNA polymerase amplification performance by fusion of DNA binding motifs.

de Vega M, Lázaro JM, Mencía M, Blanco L, Salas M.

Proc Natl Acad Sci U S A. 2010 Sep 21;107(38):16506-11. doi: 10.1073/pnas.1011428107. Epub 2010 Sep 7.

13.

phi29 DNA polymerase active site: role of residue Val250 as metal-dNTP complex ligand and in protein-primed initiation.

Pérez-Arnaiz P, Lázaro JM, Salas M, de Vega M.

J Mol Biol. 2010 Jan 15;395(2):223-33. doi: 10.1016/j.jmb.2009.10.061. Epub 2009 Oct 31.

PMID:
19883660
14.

Proofreading dynamics of a processive DNA polymerase.

Ibarra B, Chemla YR, Plyasunov S, Smith SB, Lázaro JM, Salas M, Bustamante C.

EMBO J. 2009 Sep 16;28(18):2794-802. doi: 10.1038/emboj.2009.219. Epub 2009 Aug 6.

15.

Functional importance of bacteriophage phi29 DNA polymerase residue Tyr148 in primer-terminus stabilisation at the 3'-5' exonuclease active site.

Pérez-Arnaiz P, Lázaro JM, Salas M, de Vega M.

J Mol Biol. 2009 Sep 4;391(5):797-807. doi: 10.1016/j.jmb.2009.06.068. Epub 2009 Jul 1.

PMID:
19576228
16.

Gas Sensor Based on Photonic Crystal Fibres in the 2ν(3) and ν(2) + 2ν(3) Vibrational Bands of Methane.

Cubillas AM, Lazaro JM, Conde OM, Petrovich MN, Lopez-Higuera JM.

Sensors (Basel). 2009;9(8):6261-72. doi: 10.3390/s90806261. Epub 2009 Aug 10.

17.

Multi-Line Fit Model for the Detection of Methane at ν(2) + 2ν(3) Band using Hollow-Core Photonic Bandgap Fibres.

Cubillas AM, Lazaro JM, Conde OM, Petrovich MN, Lopez-Higuera JM.

Sensors (Basel). 2009;9(1):490-502. doi: 10.3390/s90100490. Epub 2009 Jan 14.

18.

Phage phi29 and Nf terminal protein-priming domain specifies the internal template nucleotide to initiate DNA replication.

Longás E, Villar L, Lázaro JM, de Vega M, Salas M.

Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18290-5. doi: 10.1073/pnas.0809882105. Epub 2008 Nov 14.

19.

Characterization of a Bacillus subtilis 64-kDa DNA polymerase X potentially involved in DNA repair.

Baños B, Lázaro JM, Villar L, Salas M, de Vega M.

J Mol Biol. 2008 Dec 31;384(5):1019-28. doi: 10.1016/j.jmb.2008.09.081. Epub 2008 Oct 10.

20.

Editing of misaligned 3'-termini by an intrinsic 3'-5' exonuclease activity residing in the PHP domain of a family X DNA polymerase.

Baños B, Lázaro JM, Villar L, Salas M, de Vega M.

Nucleic Acids Res. 2008 Oct;36(18):5736-49. doi: 10.1093/nar/gkn526. Epub 2008 Sep 6.

Supplemental Content

Loading ...
Support Center