Format

Send to

Choose Destination
J Plant Physiol. 2017 Sep;216:79-87. doi: 10.1016/j.jplph.2017.05.014. Epub 2017 May 23.

Nitrogen-source preference in blueberry (Vaccinium sp.): Enhanced shoot nitrogen assimilation in response to direct supply of nitrate.

Author information

1
Department of Horticulture, University of Georgia, 1111 Miller Plant Sciences, Athens, GA, 30602, United Statesof America; Douglas S. Alt, Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, United States of America. Electronic address: alt.73@osu.edu.
2
Department of Horticulture, University of Georgia, 1111 Miller Plant Sciences, Athens, GA, 30602, United Statesof America; Douglas S. Alt, Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, United States of America. Electronic address: doylejw@uga.edu.
3
Department of Horticulture, University of Georgia, 1111 Miller Plant Sciences, Athens, GA, 30602, United Statesof America; Douglas S. Alt, Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, United States of America. Electronic address: malladi@uga.edu.

Abstract

Blueberry (Vaccinium sp.) is thought to display a preference for the ammonium (NH4+) form over the nitrate (NO3-) form of inorganic nitrogen (N). This N-source preference has been associated with a generally low capacity to assimilate the NO3- form of N, especially within the shoot tissues. Nitrate assimilation is mediated by nitrate reductase (NR), a rate limiting enzyme that converts NO3- to nitrite (NO2-). We investigated potential limitations of NO3- assimilation in two blueberry species, rabbiteye (Vaccinium ashei) and southern highbush (Vaccinium corymbosum) by supplying NO3- to the roots, leaf surface, or through the cut stem. Both species displayed relatively low but similar root uptake rates for both forms of inorganic N. Nitrate uptake through the roots transiently increased NR activity by up to 3.3-fold and root NR gene expression by up to 4-fold. However, supplying NO3- to the roots did not increase its transport in the xylem, nor did it increase NR activity in the leaves, indicating that the acquired N was largely assimilated or stored within the roots. Foliar application of NO3- increased leaf NR activity by up to 3.5-fold, but did not alter NO3- metabolism-related gene expression, suggesting that blueberries are capable of post translational regulation of NR activity in the shoots. Additionally, supplying NO3- to the cut ends of stems resulted in around a 5-fold increase in NR activity, a 10-fold increase in NR transcript accumulation, and up to a 195-fold increase in transcript accumulation of NITRITE REDUCTASE (NiR1) which codes for the enzyme catalyzing the conversion of NO2- to NH4+. These data indicate that blueberry shoots are capable of assimilating NO3- when it is directly supplied to these tissues. Together, these data suggest that limitations in the uptake and translocation of NO3- to the shoots may limit overall NO3- assimilation capacity in blueberry.

KEYWORDS:

Ericaceae; Gene expression; Hydroponics; Nitrate reductase; Nitrite reductase; Nitrogen acquisition

PMID:
28578080
DOI:
10.1016/j.jplph.2017.05.014
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center