Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 29

1.

MicroRNAs and their targeted genes associated with phase changes of stem explants during tissue culture of tea plant.

Gao Y, Li D, Zhang LL, Borthakur D, Li QS, Ye JH, Zheng XQ, Lu JL.

Sci Rep. 2019 Dec 27;9(1):20239. doi: 10.1038/s41598-019-56686-3.

2.

Utilization of albumin fraction from defatted rice bran to stabilize and deliver (-)-epigallocatechin gallate.

Shi M, Wang ZS, Huang LY, Dong JJ, Zheng XQ, Lu JL, Liang YR, Ye JH.

Food Chem. 2020 May 1;311:125894. doi: 10.1016/j.foodchem.2019.125894. Epub 2019 Nov 19.

PMID:
31787396
3.

Development of broccoli by-products as carriers for delivering EGCG.

Shi M, Ying DY, Hlaing MM, Ye JH, Sanguansri L, Augustin MA.

Food Chem. 2019 Dec 15;301:125301. doi: 10.1016/j.foodchem.2019.125301. Epub 2019 Jul 31.

PMID:
31387032
4.

Involvement of Salicylic Acid in Anthracnose Infection in Tea Plants Revealed by Transcriptome Profiling.

Shi YL, Sheng YY, Cai ZY, Yang R, Li QS, Li XM, Li D, Guo XY, Lu JL, Ye JH, Wang KR, Zhang LJ, Liang YR, Zheng XQ.

Int J Mol Sci. 2019 May 17;20(10). pii: E2439. doi: 10.3390/ijms20102439.

5.

Inhibitory Effects of (-)-Epigallocatechin-3-gallate on Esophageal Cancer.

Wang LX, Shi YL, Zhang LJ, Wang KR, Xiang LP, Cai ZY, Lu JL, Ye JH, Liang YR, Zheng XQ.

Molecules. 2019 Mar 8;24(5). pii: E954. doi: 10.3390/molecules24050954. Review.

6.

Fermentation-based biotransformation of glucosinolates, phenolics and sugars in retorted broccoli puree by lactic acid bacteria.

Ye JH, Huang LY, Terefe NS, Augustin MA.

Food Chem. 2019 Jul 15;286:616-623. doi: 10.1016/j.foodchem.2019.02.030. Epub 2019 Feb 14.

PMID:
30827654
7.

Analysis of Differentially Expressed Genes in Tissues of Camellia sinensis during Dedifferentiation and Root Redifferentiation.

Gao Y, Zhao M, Wu XH, Li D, Borthakur D, Ye JH, Zheng XQ, Lu JL.

Sci Rep. 2019 Feb 27;9(1):2935. doi: 10.1038/s41598-019-39264-5.

8.

Complementary iTRAQ Proteomic and Transcriptomic Analyses of Leaves in Tea Plant ( Camellia sinensis L.) with Different Maturity and Regulatory Network of Flavonoid Biosynthesis.

Wu LY, Fang ZT, Lin JK, Sun Y, Du ZZ, Guo YL, Liu JH, Liang YR, Ye JH.

J Proteome Res. 2019 Jan 4;18(1):252-264. doi: 10.1021/acs.jproteome.8b00578. Epub 2018 Nov 26.

PMID:
30427694
9.

De novo transcriptome assembly of fluorine accumulator tea plant Camellia sinensis with fluoride treatments.

Li QS, Li XM, Qiao RY, Shen EH, Lin XM, Lu JL, Ye JH, Liang YR, Zheng XQ.

Sci Data. 2018 Sep 25;5:180194. doi: 10.1038/sdata.2018.194.

10.

Bioavailability of Tea Catechins and Its Improvement.

Cai ZY, Li XM, Liang JP, Xiang LP, Wang KR, Shi YL, Yang R, Shi M, Ye JH, Lu JL, Zheng XQ, Liang YR.

Molecules. 2018 Sep 13;23(9). pii: E2346. doi: 10.3390/molecules23092346. Review.

11.

Different Catabolism Pathways Triggered by Various Methylxanthines in Caffeine-Tolerant Bacterium Pseudomonas putida CT25 Isolated from Tea Garden Soil.

Ma YX, Wu XH, Wu HS, Dong ZB, Ye JH, Zheng XQ, Liang YR, Lu J.

J Microbiol Biotechnol. 2018 Jul 28;28(7):1147-1155. doi: 10.4014/jmb.1801.01043.

12.

Association of Tea Consumption with Risk of Alzheimer's Disease and Anti-Beta-Amyloid Effects of Tea.

Polito CA, Cai ZY, Shi YL, Li XM, Yang R, Shi M, Li QS, Ma SC, Xiang LP, Wang KR, Ye JH, Lu JL, Zheng XQ, Liang YR.

Nutrients. 2018 May 22;10(5). pii: E655. doi: 10.3390/nu10050655. Review.

13.

Food-grade Encapsulation Systems for (-)-Epigallocatechin Gallate.

Shi M, Shi YL, Li XM, Yang R, Cai ZY, Li QS, Ma SC, Ye JH, Lu JL, Liang YR, Zheng XQ.

Molecules. 2018 Feb 17;23(2). pii: E445. doi: 10.3390/molecules23020445. Review.

14.

Nano- and micro-particles for delivery of catechins: Physical and biological performance.

Ye JH, Augustin MA.

Crit Rev Food Sci Nutr. 2019;59(10):1563-1579. doi: 10.1080/10408398.2017.1422110. Epub 2018 Jan 18. Review.

PMID:
29345975
15.

Effect of fluoride treatment on gene expression in tea plant (Camellia sinensis).

Li QS, Lin XM, Qiao RY, Zheng XQ, Lu JL, Ye JH, Liang YR.

Sci Rep. 2017 Aug 29;7(1):9847. doi: 10.1038/s41598-017-08587-6.

16.

Antidiabetic Effects of Tea.

Fu QY, Li QS, Lin XM, Qiao RY, Yang R, Li XM, Dong ZB, Xiang LP, Zheng XQ, Lu JL, Yuan CB, Ye JH, Liang YR.

Molecules. 2017 May 20;22(5). pii: E849. doi: 10.3390/molecules22050849. Review.

17.

Binding of tea catechins to rice bran protein isolate: Interaction and protective effect during in vitro digestion.

Shi M, Huang LY, Nie N, Ye JH, Zheng XQ, Lu JL, Liang YR.

Food Res Int. 2017 Mar;93:1-7. doi: 10.1016/j.foodres.2017.01.006. Epub 2017 Jan 7.

PMID:
28290275
18.

Tea Polysaccharides and Their Bioactivities.

Du LL, Fu QY, Xiang LP, Zheng XQ, Lu JL, Ye JH, Li QS, Polito CA, Liang YR.

Molecules. 2016 Oct 30;21(11). pii: E1449. Review.

19.

Ultraviolet B (UVB) Photosensitivities of Tea Catechins and the Relevant Chemical Conversions.

Shi M, Nie Y, Zheng XQ, Lu JL, Liang YR, Ye JH.

Molecules. 2016 Oct 10;21(10). pii: E1345.

20.

Suppressive Effects of Tea Catechins on Breast Cancer.

Xiang LP, Wang A, Ye JH, Zheng XQ, Polito CA, Lu JL, Li QS, Liang YR.

Nutrients. 2016 Jul 28;8(8). pii: E458. doi: 10.3390/nu8080458. Review.

Supplemental Content

Loading ...
Support Center