Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 87

1.

Overexpression of Phosphate Transporter Gene CmPht1;2 Facilitated Pi Uptake and Alternated the Metabolic Profiles of Chrysanthemum Under Phosphate Deficiency.

Liu C, Su J, Stephen GK, Wang H, Song A, Chen F, Zhu Y, Chen S, Jiang J.

Front Plant Sci. 2018 Jul 20;9:686. doi: 10.3389/fpls.2018.00686. eCollection 2018.

2.

The over-expression of a chrysanthemum gene encoding an RNA polymerase II CTD phosphatase-like 1 enzyme enhances tolerance to heat stress.

Qi Y, Liu Y, Zhang Z, Gao J, Guan Z, Fang W, Chen S, Chen F, Jiang J.

Hortic Res. 2018 Jul 1;5:37. doi: 10.1038/s41438-018-0037-y. eCollection 2018.

3.

The chrysanthemum leaf and root transcript profiling in response to salinity stress.

Cheng P, Gao J, Feng Y, Zhang Z, Liu Y, Fang W, Chen S, Chen F, Jiang J.

Gene. 2018 Oct 20;674:161-169. doi: 10.1016/j.gene.2018.06.075. Epub 2018 Jun 23.

PMID:
29944951
4.

Comparative Transcriptome Analysis of Waterlogging-Sensitive and Waterlogging-Tolerant Chrysanthemum morifolium Cultivars under Waterlogging Stress and Reoxygenation Conditions.

Zhao N, Li C, Yan Y, Cao W, Song A, Wang H, Chen S, Jiang J, Chen F.

Int J Mol Sci. 2018 May 14;19(5). pii: E1455. doi: 10.3390/ijms19051455.

5.

Investigation of Differences in Fertility among Progenies from Self-Pollinated Chrysanthemum.

Wang F, Zhong X, Wang H, Song A, Chen F, Fang W, Jiang J, Teng N.

Int J Mol Sci. 2018 Mar 13;19(3). pii: E832. doi: 10.3390/ijms19030832.

6.
7.

Landscape of emerging and re-emerging infectious diseases in China: impact of ecology, climate, and behavior.

Liu Q, Xu W, Lu S, Jiang J, Zhou J, Shao Z, Liu X, Xu L, Xiong Y, Zheng H, Jin S, Jiang H, Cao W, Xu J.

Front Med. 2018 Feb;12(1):3-22. doi: 10.1007/s11684-017-0605-9. Epub 2018 Jan 24. Review.

PMID:
29368266
8.

GC-MS Analysis of the Volatile Constituents in the Leaves of 14 Compositae Plants.

Wang Y, Li X, Jiang Q, Sun H, Jiang J, Chen S, Guan Z, Fang W, Chen F.

Molecules. 2018 Jan 18;23(1). pii: E166. doi: 10.3390/molecules23010166.

9.

Chrysanthemum CmHSFA4 gene positively regulates salt stress tolerance in transgenic chrysanthemum.

Li F, Zhang H, Zhao H, Gao T, Song A, Jiang J, Chen F, Chen S.

Plant Biotechnol J. 2018 Jul;16(7):1311-1321. doi: 10.1111/pbi.12871. Epub 2018 Jan 22.

10.

HISTONE DEACETYLASE 6 represses pathogen defence responses in Arabidopsis thaliana.

Wang Y, Hu Q, Wu Z, Wang H, Han S, Jin Y, Zhou J, Zhang Z, Jiang J, Shen Y, Shi H, Yang W.

Plant Cell Environ. 2017 Dec;40(12):2972-2986. doi: 10.1111/pce.13047. Epub 2017 Oct 30.

PMID:
28770584
11.

Whole genome duplication enhances the photosynthetic capacity of Chrysanthemum nankingense.

Dong B, Wang H, Liu T, Cheng P, Chen Y, Chen S, Guan Z, Fang W, Jiang J, Chen F.

Mol Genet Genomics. 2017 Dec;292(6):1247-1256. doi: 10.1007/s00438-017-1344-y. Epub 2017 Jul 3.

PMID:
28674743
12.

Gibberellic Acid Signaling Is Required to Induce Flowering of Chrysanthemums Grown under Both Short and Long Days.

Dong B, Deng Y, Wang H, Gao R, Stephen GK, Chen S, Jiang J, Chen F.

Int J Mol Sci. 2017 Jun 12;18(6). pii: E1259. doi: 10.3390/ijms18061259.

13.

Expression profiling of Chrysanthemum crassum under salinity stress and the initiation of morphological changes.

Guan Z, Feng Y, Song A, Shi X, Mao Y, Chen S, Jiang J, Ding L, Chen F.

PLoS One. 2017 Apr 24;12(4):e0175972. doi: 10.1371/journal.pone.0175972. eCollection 2017.

14.

The heterologous expression of a chrysanthemum TCP-P transcription factor CmTCP14 suppresses organ size and delays senescence in Arabidopsis thaliana.

Zhang T, Qu Y, Wang H, Wang J, Song A, Hu Y, Chen S, Jiang J, Chen F.

Plant Physiol Biochem. 2017 Jun;115:239-248. doi: 10.1016/j.plaphy.2017.03.026. Epub 2017 Apr 2.

PMID:
28395169
15.

CmMYB19 Over-Expression Improves Aphid Tolerance in Chrysanthemum by Promoting Lignin Synthesis.

Wang Y, Sheng L, Zhang H, Du X, An C, Xia X, Chen F, Jiang J, Chen S.

Int J Mol Sci. 2017 Mar 12;18(3). pii: E619. doi: 10.3390/ijms18030619.

16.

CmFTL2 is involved in the photoperiod- and sucrose-mediated control of flowering time in chrysanthemum.

Sun J, Wang H, Ren L, Chen S, Chen F, Jiang J.

Hortic Res. 2017 Feb 15;4:17001. doi: 10.1038/hortres.2017.1. eCollection 2017.

17.

Transcriptomic and hormone analyses reveal mechanisms underlying petal elongation in Chrysanthemum morifolium 'Jinba'.

Wang J, Wang H, Ding L, Song A, Shen F, Jiang J, Chen S, Chen F.

Plant Mol Biol. 2017 Apr;93(6):593-606. doi: 10.1007/s11103-017-0584-x. Epub 2017 Jan 20.

PMID:
28108965
18.

Functional analysis of alternative splicing of the FLOWERING LOCUS T orthologous gene in Chrysanthemum morifolium.

Mao Y, Sun J, Cao P, Zhang R, Fu Q, Chen S, Chen F, Jiang J.

Hortic Res. 2016 Nov 23;3:16058. eCollection 2016.

19.

Morphological, Genome and Gene Expression Changes in Newly Induced Autopolyploid Chrysanthemum lavandulifolium (Fisch. ex Trautv.) Makino.

Gao R, Wang H, Dong B, Yang X, Chen S, Jiang J, Zhang Z, Liu C, Zhao N, Chen F.

Int J Mol Sci. 2016 Oct 9;17(10). pii: E1690.

20.

miRNAs Are Involved in Determining the Improved Vigor of Autotetrapoid Chrysanthemum nankingense.

Dong B, Wang H, Song A, Liu T, Chen Y, Fang W, Chen S, Chen F, Guan Z, Jiang J.

Front Plant Sci. 2016 Sep 28;7:1412. eCollection 2016.

Supplemental Content

Loading ...
Support Center