Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 36

1.

Development of a methodology for reversible chemical modification of silicon surfaces with application in nanomechanical biosensors.

Sato RH, Kosaka PM, Omori ÁT, Ferreira EA, Petri DFS, Malvar Ó, Domínguez CM, Pini V, Ahumada Ó, Tamayo J, Calleja M, Cunha RLOR, Fiorito PA.

Biosens Bioelectron. 2019 Jul 15;137:287-293. doi: 10.1016/j.bios.2019.04.028. Epub 2019 Apr 27.

PMID:
31125818
2.

Nanomechanical Plasmon Spectroscopy of Single Gold Nanoparticles.

Ramos D, Malvar O, Davis ZJ, Tamayo J, Calleja M.

Nano Lett. 2018 Nov 14;18(11):7165-7170. doi: 10.1021/acs.nanolett.8b03236. Epub 2018 Oct 19.

PMID:
30339403
3.

Direct Detection of OXA-48 Carbapenemase Gene in Lysate Samples through Changes in Mechanical Properties of DNA Monolayers upon Hybridization.

Domínguez CM, Ramos D, Mingorance J, Fierro JLG, Tamayo J, Calleja M.

Anal Chem. 2018 Jan 2;90(1):968-973. doi: 10.1021/acs.analchem.7b04094. Epub 2017 Dec 14.

PMID:
29186953
4.

Optomechanical devices for deep plasma cancer proteomics.

Kosaka PM, Calleja M, Tamayo J.

Semin Cancer Biol. 2018 Oct;52(Pt 1):26-38. doi: 10.1016/j.semcancer.2017.08.011. Epub 2017 Sep 1. Review.

5.

Effect of water-DNA interactions on elastic properties of DNA self-assembled monolayers.

Domínguez CM, Ramos D, Mendieta-Moreno JI, Fierro JLG, Mendieta J, Tamayo J, Calleja M.

Sci Rep. 2017 Apr 3;7(1):536. doi: 10.1038/s41598-017-00605-x.

6.

Ultrasensitive detection of HIV-1 p24 antigen by a hybrid nanomechanical-optoplasmonic platform with potential for detecting HIV-1 at first week after infection.

Kosaka PM, Pini V, Calleja M, Tamayo J.

PLoS One. 2017 Feb 15;12(2):e0171899. doi: 10.1371/journal.pone.0171899. eCollection 2017.

7.

Volatile-Mediated Effects Predominate in Paraburkholderia phytofirmans Growth Promotion and Salt Stress Tolerance of Arabidopsis thaliana.

Ledger T, Rojas S, Timmermann T, Pinedo I, Poupin MJ, Garrido T, Richter P, Tamayo J, Donoso R.

Front Microbiol. 2016 Nov 17;7:1838. eCollection 2016.

8.

Spatially Multiplexed Micro-Spectrophotometry in Bright Field Mode for Thin Film Characterization.

Pini V, Kosaka PM, Ruz JJ, Malvar O, Encinar M, Tamayo J, Calleja M.

Sensors (Basel). 2016 Jun 21;16(6). pii: E926. doi: 10.3390/s16060926.

9.

Effect of Actin Organization on the Stiffness of Living Breast Cancer Cells Revealed by Peak-Force Modulation Atomic Force Microscopy.

Calzado-Martín A, Encinar M, Tamayo J, Calleja M, San Paulo A.

ACS Nano. 2016 Mar 22;10(3):3365-74. doi: 10.1021/acsnano.5b07162. Epub 2016 Feb 25.

PMID:
26901115
10.

Mass sensing: Optomechanics to the rescue.

Tamayo J.

Nat Nanotechnol. 2015 Sep;10(9):738-9. doi: 10.1038/nnano.2015.200. No abstract available.

PMID:
26329109
11.

Highly sensitive measurement of liquid density in air using suspended microcapillary resonators.

Malvar O, Ramos D, Martínez C, Kosaka P, Tamayo J, Calleja M.

Sensors (Basel). 2015 Mar 30;15(4):7650-7. doi: 10.3390/s150407650.

12.

Label-free DNA-based detection of Mycobacterium tuberculosis and rifampicin resistance through hydration induced stress in microcantilevers.

Domínguez CM, Kosaka PM, Sotillo A, Mingorance J, Tamayo J, Calleja M.

Anal Chem. 2015 Feb 3;87(3):1494-8. doi: 10.1021/ac504523f. Epub 2015 Jan 22.

PMID:
25599922
13.

Hydration induced stress on DNA monolayers grafted on microcantilevers.

Domínguez CM, Kosaka PM, Mokry G, Pini V, Malvar O, del Rey M, Ramos D, San Paulo A, Tamayo J, Calleja M.

Langmuir. 2014 Sep 16;30(36):10962-9. doi: 10.1021/la501865h. Epub 2014 Aug 29.

PMID:
25148575
14.

Silicon nanowires: where mechanics and optics meet at the nanoscale.

Ramos D, Gil-Santos E, Malvar O, Llorens JM, Pini V, San Paulo A, Calleja M, Tamayo J.

Sci Rep. 2013 Dec 6;3:3445. doi: 10.1038/srep03445.

15.

Atomic force microscopy reveals two phases in single stranded DNA self-assembled monolayers.

Kosaka PM, González S, Domínguez CM, Cebollada A, San Paulo A, Calleja M, Tamayo J.

Nanoscale. 2013 Aug 21;5(16):7425-32. doi: 10.1039/c3nr01186k. Epub 2013 Jul 5.

PMID:
23832284
16.

Tackling reproducibility in microcantilever biosensors: a statistical approach for sensitive and specific end-point detection of immunoreactions.

Kosaka PM, Tamayo J, Ruz JJ, Puertas S, Polo E, Grazu V, de la Fuente JM, Calleja M.

Analyst. 2013 Feb 21;138(3):863-72. doi: 10.1039/c2an36192b. Epub 2012 Dec 6.

PMID:
23223515
17.

Biosensors based on nanomechanical systems.

Tamayo J, Kosaka PM, Ruz JJ, San Paulo Á, Calleja M.

Chem Soc Rev. 2013 Feb 7;42(3):1287-311. doi: 10.1039/c2cs35293a. Review.

PMID:
23152052
18.

Quantification of the surface stress in microcantilever biosensors: revisiting Stoney's equation.

Tamayo J, Ruz JJ, Pini V, Kosaka P, Calleja M.

Nanotechnology. 2012 Nov 30;23(47):475702. doi: 10.1088/0957-4484/23/47/475702. Epub 2012 Oct 26.

PMID:
23103805
19.

Challenges for nanomechanical sensors in biological detection.

Calleja M, Kosaka PM, San Paulo Á, Tamayo J.

Nanoscale. 2012 Aug 21;4(16):4925-38. doi: 10.1039/c2nr31102j. Epub 2012 Jul 18. Review.

PMID:
22810853
20.

Imaging the surface stress and vibration modes of a microcantilever by laser beam deflection microscopy.

Tamayo J, Pini V, Kosaka P, Martinez NF, Ahumada O, Calleja M.

Nanotechnology. 2012 Aug 10;23(31):315501. doi: 10.1088/0957-4484/23/31/315501. Epub 2012 Jul 13.

PMID:
22797006

Supplemental Content

Loading ...
Support Center