Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 16

1.

Establishment and Comparison of Pathogenicity and Related Neurotropism in Two Age Groups of Immune Competent Mice, C57BL/6J Using an Indian Isolate of Chikungunya Virus (CHIKV).

Jain J, Narayanan V, Kumar A, Shrinet J, Srivastava P, Chaturvedi S, Sunil S.

Viruses. 2019 Jun 25;11(6). pii: E578. doi: 10.3390/v11060578.

2.

Aedes aegypti microRNA, miR-2944b-5p interacts with 3'UTR of chikungunya virus and cellular target vps-13 to regulate viral replication.

Dubey SK, Shrinet J, Sunil S.

PLoS Negl Trop Dis. 2019 Jun 5;13(6):e0007429. doi: 10.1371/journal.pntd.0007429. eCollection 2019 Jun.

3.

Differential Proteome Analysis of Chikungunya Virus and Dengue Virus Coinfection in Aedes Mosquitoes.

Shrinet J, Srivastava P, Kumar A, Dubey SK, Sirisena PDNN, Srivastava P, Sunil S.

J Proteome Res. 2018 Oct 5;17(10):3348-3359. doi: 10.1021/acs.jproteome.8b00211. Epub 2018 Sep 17.

PMID:
30192139
4.

Mosquito Innate Immunity.

Kumar A, Srivastava P, Sirisena P, Dubey SK, Kumar R, Shrinet J, Sunil S.

Insects. 2018 Aug 8;9(3). pii: E95. doi: 10.3390/insects9030095. Review.

5.

Understanding Oxidative Stress in Aedes during Chikungunya and Dengue Virus Infections Using Integromics Analysis.

Shrinet J, Bhavesh NS, Sunil S.

Viruses. 2018 Jun 9;10(6). pii: E314. doi: 10.3390/v10060314.

6.

Aedes aegypti microRNA miR-2b regulates ubiquitin-related modifier to control chikungunya virus replication.

Dubey SK, Shrinet J, Jain J, Ali S, Sunil S.

Sci Rep. 2017 Dec 15;7(1):17666. doi: 10.1038/s41598-017-18043-0.

7.

Dengue Chikungunya co-infection: A live-in relationship??

Jain J, Dubey SK, Shrinet J, Sunil S.

Biochem Biophys Res Commun. 2017 Oct 28;492(4):608-616. doi: 10.1016/j.bbrc.2017.02.008. Epub 2017 Feb 9. Review.

PMID:
28189673
8.

Transcriptome analysis of Aedes aegypti in response to mono-infections and co-infections of dengue virus-2 and chikungunya virus.

Shrinet J, Srivastava P, Sunil S.

Biochem Biophys Res Commun. 2017 Oct 28;492(4):617-623. doi: 10.1016/j.bbrc.2017.01.162. Epub 2017 Feb 1.

PMID:
28161634
9.
10.

Analysis of coevolution in nonstructural proteins of chikungunya virus.

Jain J, Mathur K, Shrinet J, Bhatnagar RK, Sunil S.

Virol J. 2016 Jun 2;13:86. doi: 10.1186/s12985-016-0543-1.

11.

miRNAâğmRNA Conflux Regulating Immunity and Oxidative Stress Pathways in the Midgut of Blood-Fed Anopheles stephensi.

Jain S, Shrinet J, Tridibes A, Bhatnagar RK, Sunil S.

Noncoding RNA. 2015 Nov 19;1(3):222-245. doi: 10.3390/ncrna1030222.

12.

Inference of the oxidative stress network in Anopheles stephensi upon Plasmodium infection.

Shrinet J, Nandal UK, Adak T, Bhatnagar RK, Sunil S.

PLoS One. 2014 Dec 4;9(12):e114461. doi: 10.1371/journal.pone.0114461. eCollection 2014.

13.

Blood feeding and Plasmodium infection alters the miRNome of Anopheles stephensi.

Jain S, Rana V, Shrinet J, Sharma A, Tridibes A, Sunil S, Bhatnagar RK.

PLoS One. 2014 May 27;9(5):e98402. doi: 10.1371/journal.pone.0098402. eCollection 2014.

14.

Next generation sequencing reveals regulation of distinct Aedes microRNAs during chikungunya virus development.

Shrinet J, Jain S, Jain J, Bhatnagar RK, Sunil S.

PLoS Negl Trop Dis. 2014 Jan 9;8(1):e2616. doi: 10.1371/journal.pntd.0002616. eCollection 2014.

15.

A synthetic chimeric peptide harboring human papillomavirus 16 cytotoxic T lymphocyte epitopes shows therapeutic potential in a murine model of cervical cancer.

Sharma C, Khan MA, Mohan T, Shrinet J, Latha N, Singh N.

Immunol Res. 2014 Jan;58(1):132-8. doi: 10.1007/s12026-013-8447-2.

PMID:
24174302
16.

Genetic characterization of Chikungunya virus from New Delhi reveal emergence of a new molecular signature in Indian isolates.

Shrinet J, Jain S, Sharma A, Singh SS, Mathur K, Rana V, Bhatnagar RK, Gupta B, Gaind R, Deb M, Sunil S.

Virol J. 2012 May 25;9:100. doi: 10.1186/1743-422X-9-100.

Supplemental Content

Loading ...
Support Center