Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 66

1.

Laboratory strains of Bacillus anthracis lose their ability to rapidly grow and sporulate compared to wildlife outbreak strains.

Norris MH, Zincke D, Leiser OP, Kreuzer H, Hadfied TL, Blackburn JK.

PLoS One. 2020 Jan 24;15(1):e0228270. doi: 10.1371/journal.pone.0228270. eCollection 2020.

2.

Nucleotide polymorphism assay for the identification of west African group Bacillus anthracis: a lineage lacking anthrose.

Zincke D, Norris MH, Kurmanov B, Hadfield TL, Blackburn JK.

BMC Microbiol. 2020 Jan 7;20(1):6. doi: 10.1186/s12866-019-1693-2.

3.

Predicting the Geographic Distribution of the Bacillus anthracis A1.a/Western North American Sub-Lineage for the Continental United States: New Outbreaks, New Genotypes, and New Climate Data.

Yang A, Mullins JC, Van Ert M, Bowen RA, Hadfield TL, Blackburn JK.

Am J Trop Med Hyg. 2019 Dec 2. doi: 10.4269/ajtmh.19-0191. [Epub ahead of print]

PMID:
31802730
4.

Linking Geospatial and Laboratory Sciences to Define Mechanisms behind Landscape Level Drivers of Anthrax Outbreaks.

Norris MH, Blackburn JK.

Int J Environ Res Public Health. 2019 Oct 4;16(19). pii: E3747. doi: 10.3390/ijerph16193747.

5.

Antibodies to Epizootic Hemorrhagic Disease Virus (EHDV) in Farmed and Wild Florida White-Tailed Deer (Odocoileus virginianus).

Cauvin A, Dinh ETN, Orange JP, Shuman RM, Blackburn JK, Wisely SM.

J Wildl Dis. 2020 Jan;56(1):208-213. Epub 2019 Jul 12.

PMID:
31298969
6.

The global distribution of Bacillus anthracis and associated anthrax risk to humans, livestock and wildlife.

Carlson CJ, Kracalik IT, Ross N, Alexander KA, Hugh-Jones ME, Fegan M, Elkin BT, Epp T, Shury TK, Zhang W, Bagirova M, Getz WM, Blackburn JK.

Nat Microbiol. 2019 Aug;4(8):1337-1343. doi: 10.1038/s41564-019-0435-4. Epub 2019 May 13.

PMID:
31086311
7.

Geographic shifts in Aedes aegypti habitat suitability in Ecuador using larval surveillance data and ecological niche modeling: Implications of climate change for public health vector control.

Lippi CA, Stewart-Ibarra AM, Loor MEFB, Zambrano JED, Lopez NAE, Blackburn JK, Ryan SJ.

PLoS Negl Trop Dis. 2019 Apr 17;13(4):e0007322. doi: 10.1371/journal.pntd.0007322. eCollection 2019 Apr.

8.

Modeling R₀ for Pathogens with Environmental Transmission: Animal Movements, Pathogen Populations, and Local Infectious Zones.

Blackburn JK, Ganz HH, Ponciano JM, Turner WC, Ryan SJ, Kamath P, Cizauskas C, Kausrud K, Holt RD, Stenseth NC, Getz WM.

Int J Environ Res Public Health. 2019 Mar 17;16(6). pii: E954. doi: 10.3390/ijerph16060954. Review.

9.

The impact of vector control on the prevalence of Theileria cervi in farmed Florida white-tailed deer, Odocoileus virginianus.

Cauvin A, Hood K, Shuman R, Orange J, Blackburn JK, Sayler KA, Wisely SM.

Parasit Vectors. 2019 Mar 13;12(1):100. doi: 10.1186/s13071-019-3344-8.

10.

Ecological niche modeling the potential geographic distribution of four Culicoides species of veterinary significance in Florida, USA.

Sloyer KE, Burkett-Cadena ND, Yang A, Corn JL, Vigil SL, McGregor BL, Wisely SM, Blackburn JK.

PLoS One. 2019 Feb 15;14(2):e0206648. doi: 10.1371/journal.pone.0206648. eCollection 2019.

11.

Laboratory strains of Bacillus anthracis exhibit pervasive alteration in expression of proteins related to sporulation under laboratory conditions relative to genetically related wild strains.

Leiser OP, Blackburn JK, Hadfield TL, Kreuzer HW, Wunschel DS, Bruckner-Lea CJ.

PLoS One. 2018 Dec 17;13(12):e0209120. doi: 10.1371/journal.pone.0209120. eCollection 2018.

12.

Decoupling environmental effects and host population dynamics for anthrax, a classic reservoir-driven disease.

Gomez JP, Nekorchuk DM, Mao L, Ryan SJ, Ponciano JM, Blackburn JK.

PLoS One. 2018 Dec 12;13(12):e0208621. doi: 10.1371/journal.pone.0208621. eCollection 2018.

13.

EFFECTS OF BRUCELLOSIS SEROLOGIC STATUS ON PHYSIOLOGY AND BEHAVIOR OF ROCKY MOUNTAIN ELK ( CERVUS CANADENSIS NELSONI) IN SOUTHWESTERN MONTANA, USA.

Yang A, Gomez JP, Haase CG, Proffitt KM, Blackburn JK.

J Wildl Dis. 2019 Apr;55(2):304-315. doi: 10.7589/2018-01-011. Epub 2018 Oct 2.

PMID:
30277828
14.

Estimating the Geographic Distribution of Host-Seeking Adult Amblyomma americanum (Acari: Ixodidae) in Florida.

Kessler WH, Blackburn JK, Sayler KA, Glass GE.

J Med Entomol. 2019 Jan 8;56(1):55-64. doi: 10.1093/jme/tjy147.

PMID:
30169746
15.

Potential Bacillus anthracis Risk Zones for Male Plains Bison ( Bison bison bison) in Southwestern Montana, USA.

Nekorchuk DM, Morris LR, Asher V, Hunter DL, Ryan SJ, Blackburn JK.

J Wildl Dis. 2019 Jan;55(1):136-141. doi: 10.7589/2017-09-234. Epub 2018 Jul 17.

PMID:
30016211
16.

Commentary to: a cross-validation-based approach for delimiting reliable home range estimates.

Dougherty ER, de Valpine P, Carlson CJ, Blackburn JK, Getz WM.

Mov Ecol. 2018 Jul 12;6:10. doi: 10.1186/s40462-018-0128-2. eCollection 2018.

17.

An efficient extension of N-mixture models for multi-species abundance estimation.

Gomez JP, Robinson SK, Blackburn JK, Ponciano JM.

Methods Ecol Evol. 2018 Feb;9(2):340-353. doi: 10.1111/2041-210X.12856. Epub 2017 Jul 24.

18.

Spores and soil from six sides: interdisciplinarity and the environmental biology of anthrax (Bacillus anthracis).

Carlson CJ, Getz WM, Kausrud KL, Cizauskas CA, Blackburn JK, Bustos Carrillo FA, Colwell R, Easterday WR, Ganz HH, Kamath PL, Økstad OA, Turner WC, Kolstø AB, Stenseth NC.

Biol Rev Camb Philos Soc. 2018 Nov;93(4):1813-1831. doi: 10.1111/brv.12420. Epub 2018 May 6. Review.

19.

A 24-year exploratory spatial data analysis of Lyme disease incidence rate in Connecticut, USA.

Mollalo A, Blackburn JK, Morris LR, Glass GE.

Geospat Health. 2017 Nov 8;12(2):588. doi: 10.4081/gh.2017.588.

20.

Correction to: A cross-validation-based approach for delimiting reliable home range estimates.

Dougherty ER, Carlson CJ, Blackburn JK, Getz WM.

Mov Ecol. 2017 Dec 5;5:26. doi: 10.1186/s40462-017-0116-y. eCollection 2017.

Supplemental Content

Loading ...
Support Center