Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 63

1.

Microbial fuel cells directly powering a microcomputer.

Walter XA, Greenman J, Ieropoulos IA.

J Power Sources. 2020 Jan 15;446:227328. doi: 10.1016/j.jpowsour.2019.227328.

2.

Development of efficient electroactive biofilm in urine-fed microbial fuel cell cascades for bioelectricity generation.

Obata O, Salar-Garcia MJ, Greenman J, Kurt H, Chandran K, Ieropoulos I.

J Environ Manage. 2020 Mar 15;258:109992. doi: 10.1016/j.jenvman.2019.109992. Epub 2020 Jan 7.

3.

Supercapacitive paper based microbial fuel cell: High current/power production within a low cost design.

Santoro C, Winfield J, Theodosiou P, Ieropoulos I.

Bioresour Technol Rep. 2019 Sep;7:100297. doi: 10.1016/j.biteb.2019.100297.

4.

Combination of bioelectrochemical systems and electrochemical capacitors: Principles, analysis and opportunities.

Caizán-Juanarena L, Borsje C, Sleutels T, Yntema D, Santoro C, Ieropoulos I, Soavi F, Ter Heijne A.

Biotechnol Adv. 2019 Oct 13:107456. doi: 10.1016/j.biotechadv.2019.107456. [Epub ahead of print] Review.

5.

Multi-functional microbial fuel cells for power, treatment and electro-osmotic purification of urine.

Gajda I, Greenman J, Santoro C, Serov A, Atanassov P, Melhuish C, Ieropoulos IA.

J Chem Technol Biotechnol. 2019 Jul;94(7):2098-2106. doi: 10.1002/jctb.5792. Epub 2018 Sep 26.

6.

Recent advancements in real-world microbial fuel cell applications.

Gajda I, Greenman J, Ieropoulos IA.

Curr Opin Electrochem. 2018 Oct;11:78-83. doi: 10.1016/j.coelec.2018.09.006. Review.

7.

Removal of Hepatitis B virus surface HBsAg and core HBcAg antigens using microbial fuel cells producing electricity from human urine.

Pasternak G, Greenman J, Ieropoulos I.

Sci Rep. 2019 Aug 13;9(1):11787. doi: 10.1038/s41598-019-48128-x.

8.

Effect of the ceramic membrane properties on the microbial fuel cell power output and catholyte generation.

Merino-Jimenez I, Gonzalez-Juarez F, Greenman J, Ieropoulos I.

J Power Sources. 2019 Jul 31;429:30-37. doi: 10.1016/j.jpowsour.2019.04.043.

9.

Iron-streptomycin derived catalyst for efficient oxygen reduction reaction in ceramic microbial fuel cells operating with urine.

Salar Garcia MJ, Santoro C, Kodali M, Serov A, Artyushkova K, Atanassov P, Ieropoulos I.

J Power Sources. 2019 Jun 15;425:50-59. doi: 10.1016/j.jpowsour.2019.03.052.

10.

Self-stratified and self-powered micro-supercapacitor integrated into a microbial fuel cell operating in human urine.

Santoro C, Walter XA, Soavi F, Greenman J, Ieropoulos I.

Electrochim Acta. 2019 Jun 1;307:241-252. doi: 10.1016/j.electacta.2019.03.194.

11.

Urine microbial fuel cells in a semi-controlled environment for onsite urine pre-treatment and electricity production.

Cid CA, Stinchcombe A, Ieropoulos I, Hoffmann MR.

J Power Sources. 2018 Oct 1;400:441-448. doi: 10.1016/j.jpowsour.2018.08.051.

12.

Self-stratifying microbial fuel cell: The importance of the cathode electrode immersion height.

Walter XA, Santoro C, Greenman J, Ieropoulos I.

Int J Hydrogen Energy. 2019 Feb 15;44(9):4524-4532. doi: 10.1016/j.ijhydene.2018.07.033.

13.

Fate of three bioluminescent pathogenic bacteria fed through a cascade of urine microbial fuel cells.

Ieropoulos I, Obata O, Pasternak G, Greenman J.

J Ind Microbiol Biotechnol. 2019 May;46(5):587-599. doi: 10.1007/s10295-019-02153-x. Epub 2019 Feb 22.

14.

Increased power generation in supercapacitive microbial fuel cell stack using Fe-N-C cathode catalyst.

Santoro C, Kodali M, Shamoon N, Serov A, Soavi F, Merino-Jimenez I, Gajda I, Greenman J, Ieropoulos I, Atanassov P.

J Power Sources. 2019 Feb 1;412:416-424. doi: 10.1016/j.jpowsour.2018.11.069.

15.

Dynamic evolution of anodic biofilm when maturing under different external resistive loads in microbial fuel cells. Electrochemical perspective.

Pasternak G, Greenman J, Ieropoulos I.

J Power Sources. 2018 Oct 1;400:392-401. doi: 10.1016/j.jpowsour.2018.08.031.

16.

Scalability of self-stratifying microbial fuel cell: Towards height miniaturisation.

Walter XA, Santoro C, Greenman J, Ieropoulos IA.

Bioelectrochemistry. 2019 Jun;127:68-75. doi: 10.1016/j.bioelechem.2019.01.004. Epub 2019 Jan 9.

17.

PEE POWER® urinal II - Urinal scale-up with microbial fuel cell scale-down for improved lighting.

Walter XA, Merino-Jiménez I, Greenman J, Ieropoulos I.

J Power Sources. 2018 Jul 15;392:150-158. doi: 10.1016/j.jpowsour.2018.02.047.

18.

Modelling Microbial Fuel Cells Using Lattice Boltzmann Methods.

Tsompanas MA, Adamatzky A, Ieropoulos I, Phillips NW, Sirakoulis GC, Greenman J.

IEEE/ACM Trans Comput Biol Bioinform. 2019 Nov-Dec;16(6):2035-2045. doi: 10.1109/TCBB.2018.2831223. Epub 2018 Apr 30.

PMID:
29994029
19.

Transport of Live Cells Under Sterile Conditions Using a Chemotactic Droplet.

Holler S, Porcelli C, Ieropoulos IA, Hanczyc MM.

Sci Rep. 2018 May 30;8(1):8408. doi: 10.1038/s41598-018-26703-y.

20.

Binder materials for the cathodes applied to self-stratifying membraneless microbial fuel cell.

Walter XA, Greenman J, Ieropoulos I.

Bioelectrochemistry. 2018 Oct;123:119-124. doi: 10.1016/j.bioelechem.2018.04.011. Epub 2018 Apr 19.

Supplemental Content

Loading ...
Support Center