Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 49

1.

Effect of Water Chemistry on Antimony Removal by Chemical Coagulation: Implications of ζ-Potential and Size of Precipitates.

Inam MA, Khan R, Akram M, Khan S, Yeom IT.

Int J Mol Sci. 2019 Jun 17;20(12). pii: E2945. doi: 10.3390/ijms20122945.

2.

Interaction of Arsenic Species with Organic Ligands: Competitive Removal from Water by Coagulation-Flocculation-Sedimentation (C/F/S).

Inam MA, Khan R, Akram M, Khan S, Park DR, Yeom IT.

Molecules. 2019 Apr 24;24(8). pii: E1619. doi: 10.3390/molecules24081619.

3.

The Influence of Ionic and Nonionic Surfactants on the Colloidal Stability and Removal of CuO Nanoparticles from Water by Chemical Coagulation.

Khan R, Inam MA, Khan S, Jiménez AN, Park DR, Yeom IT.

Int J Environ Res Public Health. 2019 Apr 9;16(7). pii: E1260. doi: 10.3390/ijerph16071260.

4.

Complexation of Antimony with Natural Organic Matter: Performance Evaluation during Coagulation-Flocculation Process.

Inam MA, Khan R, Park DR, Khan S, Uddin A, Yeom IT.

Int J Environ Res Public Health. 2019 Mar 27;16(7). pii: E1092. doi: 10.3390/ijerph16071092.

5.

Interaction between Persistent Organic Pollutants and ZnO NPs in Synthetic and Natural Waters.

Khan R, Inam MA, Khan S, Park DR, Yeom IT.

Nanomaterials (Basel). 2019 Mar 21;9(3). pii: E472. doi: 10.3390/nano9030472.

6.

Feasibility analysis of homogenizer coupled solar photo Fenton process for waste activated sludge reduction.

Sharmila VG, Kumar SA, Banu JR, Yeom IT, Saratale GD.

J Environ Manage. 2019 May 15;238:251-256. doi: 10.1016/j.jenvman.2019.03.013. Epub 2019 Mar 7.

PMID:
30852401
7.

The Removal of CuO Nanoparticles from Water by Conventional Treatment C/F/S: The Effect of pH and Natural Organic Matter.

Khan R, Inam MA, Park DR, Khan S, Akram M, Yeom IT.

Molecules. 2019 Mar 5;24(5). pii: E914. doi: 10.3390/molecules24050914.

8.

Evaluation of photocatalytic thin film pretreatment on anaerobic degradability of exopolymer extracted biosolids for biofuel generation.

Godvin Sharmila V, Gunasekaran M, Angappane S, Zhen G, Tae Yeom I, Rajesh Banu J.

Bioresour Technol. 2019 May;279:132-139. doi: 10.1016/j.biortech.2019.01.124. Epub 2019 Jan 26.

PMID:
30716605
9.

Combinative treatment of phenol-rich retting-pond wastewater by a hybrid upflow anaerobic sludge blanket reactor and solar photofenton process.

Sokkanathan G, Sharmila VG, Kaliappan S, Banu JR, Yeom IT, Rani RU.

J Environ Manage. 2018 Jan 15;206:999-1006. doi: 10.1016/j.jenvman.2017.11.083. Epub 2017 Dec 7.

PMID:
30029350
10.

Enhancing biomethanation from dairy waste activated biomass using a novel EGTA mediated microwave disintegration.

Rajesh Banu J, Eswari AP, Saratale GD, Uma Rani R, Kaliappan S, Yeom IT.

J Environ Manage. 2018 Oct 1;223:644-651. doi: 10.1016/j.jenvman.2018.06.079. Epub 2018 Jun 30.

PMID:
29975891
11.

Marsilea spp.-A novel source of lignocellulosic biomass: Effect of solubilized lignin on anaerobic biodegradability and cost of energy products.

Rajesh Banu J, Sugitha S, Kannah RY, Kavitha S, Yeom IT.

Bioresour Technol. 2018 May;255:220-228. doi: 10.1016/j.biortech.2018.01.103. Epub 2018 Feb 2.

PMID:
29427873
12.

Profitable ultrasonic assisted microwave disintegration of sludge biomass: Modelling of biomethanation and energy parameter analysis.

Kavitha S, Rajesh Banu J, Kumar G, Kaliappan S, Yeom IT.

Bioresour Technol. 2018 Apr;254:203-213. doi: 10.1016/j.biortech.2018.01.072. Epub 2018 Jan 31.

PMID:
29413924
13.

H2O2 induced cost effective microwave disintegration of dairy waste activated sludge in acidic environment for efficient biomethane generation.

Eswari AP, Kavitha S, Banu JR, Karthikeyan OP, Yeom IT.

Bioresour Technol. 2017 Nov;244(Pt 1):688-697. doi: 10.1016/j.biortech.2017.07.078. Epub 2017 Aug 7.

PMID:
28818797
14.

Surfactant coupled sonic pretreatment of waste activated sludge for energetically positive biogas generation.

Ushani U, Rajesh Banu J, Tamilarasan K, Kavitha S, Tae Yeom I.

Bioresour Technol. 2017 Oct;241:710-719. doi: 10.1016/j.biortech.2017.05.201. Epub 2017 Jun 2.

PMID:
28622653
15.

Enhancement of biogas production from microalgal biomass through cellulolytic bacterial pretreatment.

Kavitha S, Subbulakshmi P, Rajesh Banu J, Gobi M, Tae Yeom I.

Bioresour Technol. 2017 Jun;233:34-43. doi: 10.1016/j.biortech.2017.02.081. Epub 2017 Feb 21.

PMID:
28258994
16.

Synergetic effect of combined pretreatment for energy efficient biogas generation.

Kannah RY, Kavitha S, Rajesh Banu J, Yeom IT, Johnson M.

Bioresour Technol. 2017 May;232:235-246. doi: 10.1016/j.biortech.2017.02.042. Epub 2017 Feb 12.

PMID:
28236758
17.

Immobilized and MgSO4 induced cost effective bacterial disintegration of waste activated sludge for effective anaerobic digestion.

Ushani U, Rajesh Banu J, Kavitha S, Kaliappan S, Yeom IT.

Chemosphere. 2017 May;175:66-75. doi: 10.1016/j.chemosphere.2017.02.046. Epub 2017 Feb 8.

PMID:
28211336
18.

Energy-efficient methane production from macroalgal biomass through chemo disperser liquefaction.

Tamilarasan K, Kavitha S, Rajesh Banu J, Arulazhagan P, Yeom IT.

Bioresour Technol. 2017 Mar;228:156-163. doi: 10.1016/j.biortech.2016.12.102. Epub 2016 Dec 30.

PMID:
28064132
19.

Upgrading the hydrolytic potential of immobilized bacterial pretreatment to boost biogas production.

Ushani U, Kavitha S, Johnson M, Yeom IT, Banu JR.

Environ Sci Pollut Res Int. 2017 Jan;24(1):813-826. doi: 10.1007/s11356-016-7819-2. Epub 2016 Oct 18.

PMID:
27757748
20.

Fenton mediated ultrasonic disintegration of sludge biomass: Biodegradability studies, energetic assessment, and its economic viability.

Kavitha S, Rajesh Banu J, IvinShaju CD, Kaliappan S, Yeom IT.

Bioresour Technol. 2016 Dec;221:1-8. doi: 10.1016/j.biortech.2016.09.012. Epub 2016 Sep 9.

PMID:
27631887

Supplemental Content

Loading ...
Support Center