Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 19

1.

A novel CXCL8 analog is effective in inhibiting the growth via cell cycle arrest and attenuating invasion of Lewis lung carcinoma.

Hsu SY, Yu HY, Lee WC, Hsiao CE, Wu CL, Cheng HT, Lin LJ, Li F, Chou YT, Cheng JW.

Onco Targets Ther. 2019 Sep 16;12:7611-7621. doi: 10.2147/OTT.S215824. eCollection 2019.

2.

Characteristic genes in THP‑1 derived macrophages infected with Mycobacterium tuberculosis H37Rv strain identified by integrating bioinformatics methods.

Zhang YW, Lin Y, Yu HY, Tian RN, Li F.

Int J Mol Med. 2019 Oct;44(4):1243-1254. doi: 10.3892/ijmm.2019.4293. Epub 2019 Jul 30.

3.

Dependence on size and shape of non-nature amino acids in the enhancement of lipopolysaccharide (LPS) neutralizing activities of antimicrobial peptides.

Chih YH, Wang SY, Yip BS, Cheng KT, Hsu SY, Wu CL, Yu HY, Cheng JW.

J Colloid Interface Sci. 2019 Jan 1;533:492-502. doi: 10.1016/j.jcis.2018.08.042. Epub 2018 Aug 14.

PMID:
30176540
4.

A novel CXCL8-IP10 hybrid protein is effective in blocking pulmonary pathology in a mouse model of Klebsiella pneumoniae infection.

Chen Z, Chen X, Cheng HT, Yeh SC, Yu HY, Cheng JW, Li F.

Int Immunopharmacol. 2018 Sep;62:40-45. doi: 10.1016/j.intimp.2018.06.040. Epub 2018 Jul 3.

PMID:
29990693
5.

Solar spectrum matching with white OLED and monochromatic LEDs.

Yu HY, Cao GY, Zhang JH, Yang Y, Sun WL, Wang LP, Zou NY.

Appl Opt. 2018 Apr 1;57(10):2659-2666. doi: 10.1364/AO.57.002659.

PMID:
29714254
6.

High Level Expression and Purification of the Clinically Active Antimicrobial Peptide P-113 in Escherichia coli.

Cheng KT, Wu CL, Yip BS, Yu HY, Cheng HT, Chih YH, Cheng JW.

Molecules. 2018 Mar 30;23(4). pii: E800. doi: 10.3390/molecules23040800.

7.

Preventive effects of the novel antimicrobial peptide Nal-P-113 in a rat Periodontitis model by limiting the growth of Porphyromonas gingivalis and modulating IL-1β and TNF-α production.

Wang HY, Lin L, Fu W, Yu HY, Yu N, Tan LS, Cheng JW, Pan YP.

BMC Complement Altern Med. 2017 Aug 29;17(1):426. doi: 10.1186/s12906-017-1931-9.

8.

Effects of K11R and G31P Mutations on the Structure and Biological Activities of CXCL8: Solution Structure of Human CXCL8(3-72)K11R/G31P.

Cheng HT, Yu HY, Gordon JR, Li F, Cheng JW.

Molecules. 2017 Jul 21;22(7). pii: E1229. doi: 10.3390/molecules22071229.

9.

Role of β-naphthylalanine end-tags in the enhancement of antiendotoxin activities: Solution structure of the antimicrobial peptide S1-Nal-Nal in complex with lipopolysaccharide.

Yu HY, Chen YA, Yip BS, Wang SY, Wei HJ, Chih YH, Chen KH, Cheng JW.

Biochim Biophys Acta Biomembr. 2017 Jun;1859(6):1114-1123. doi: 10.1016/j.bbamem.2017.03.007. Epub 2017 Mar 10.

10.

Molecular pathways underlying inhibitory effect of antimicrobial peptide Nal-P-113 on bacteria biofilms formation of Porphyromonas gingivalis W83 by DNA microarray.

Wang HY, Lin L, Tan LS, Yu HY, Cheng JW, Pan YP.

BMC Microbiol. 2017 Feb 17;17(1):37. doi: 10.1186/s12866-017-0948-z.

11.

Efficacy of a novel antimicrobial peptide against periodontal pathogens in both planktonic and polymicrobial biofilm states.

Wang HY, Cheng JW, Yu HY, Lin L, Chih YH, Pan YP.

Acta Biomater. 2015 Oct;25:150-61. doi: 10.1016/j.actbio.2015.07.031. Epub 2015 Jul 22.

PMID:
26210284
12.

Ultrashort Antimicrobial Peptides with Antiendotoxin Properties.

Chih YH, Lin YS, Yip BS, Wei HJ, Chu HL, Yu HY, Cheng HT, Chou YT, Cheng JW.

Antimicrob Agents Chemother. 2015 Aug;59(8):5052-6. doi: 10.1128/AAC.00519-15. Epub 2015 Jun 1.

13.

Novel antimicrobial peptides with high anticancer activity and selectivity.

Chu HL, Yip BS, Chen KH, Yu HY, Chih YH, Cheng HT, Chou YT, Cheng JW.

PLoS One. 2015 May 13;10(5):e0126390. doi: 10.1371/journal.pone.0126390. eCollection 2015.

14.

Correlations between membrane immersion depth, orientation, and salt-resistance of tryptophan-rich antimicrobial peptides.

Yu HY, Yip BS, Tu CH, Chen HL, Chu HL, Chih YH, Cheng HT, Sue SC, Cheng JW.

Biochim Biophys Acta. 2013 Nov;1828(11):2720-8. doi: 10.1016/j.bbamem.2013.07.020. Epub 2013 Jul 27.

15.

Boosting salt resistance of short antimicrobial peptides.

Chu HL, Yu HY, Yip BS, Chih YH, Liang CW, Cheng HT, Cheng JW.

Antimicrob Agents Chemother. 2013 Aug;57(8):4050-2. doi: 10.1128/AAC.00252-13. Epub 2013 May 28.

16.

Effect of the antimicrobial peptide D-Nal-Pac-525 on the growth of Streptococcus mutans and its biofilm formation.

Li H, Cheng JW, Yu HY, Xin Y, Tang L, Ma Y.

J Microbiol Biotechnol. 2013 Aug;23(8):1070-5.

17.

Easy strategy to increase salt resistance of antimicrobial peptides.

Yu HY, Tu CH, Yip BS, Chen HL, Cheng HT, Huang KC, Lo HJ, Cheng JW.

Antimicrob Agents Chemother. 2011 Oct;55(10):4918-21. doi: 10.1128/AAC.00202-11. Epub 2011 Jul 18.

18.

Rational design of tryptophan-rich antimicrobial peptides with enhanced antimicrobial activities and specificities.

Yu HY, Huang KC, Yip BS, Tu CH, Chen HL, Cheng HT, Cheng JW.

Chembiochem. 2010 Nov 2;11(16):2273-82. doi: 10.1002/cbic.201000372.

PMID:
20865718
19.

A new protocol for high-yield purification of recombinant human CXCL8((3-72))K11R/G31P expressed in Escherichia coli.

Cheng HT, Huang KC, Yu HY, Gao KJ, Zhao X, Li F, Town J, Gordon JR, Cheng JW.

Protein Expr Purif. 2008 Sep;61(1):65-72. doi: 10.1016/j.pep.2008.04.007. Epub 2008 May 1.

PMID:
18541440

Supplemental Content

Loading ...
Support Center