Format

Send to

Choose Destination
Int J Environ Res Public Health. 2018 Dec 14;15(12). pii: E2862. doi: 10.3390/ijerph15122862.

How Outdoor Trees Affect Indoor Particulate Matter Dispersion: CFD Simulations in a Naturally Ventilated Auditorium.

Author information

1
College of Landscape Architecture & Arts, Northwest A&F University, Yangling 712100, China. hongbo@nwsuaf.edu.cn.
2
College of Landscape Architecture & Arts, Northwest A&F University, Yangling 712100, China. hongqiao@nwafu.edu.cn.
3
College of Landscape Architecture & Arts, Northwest A&F University, Yangling 712100, China. jrs_96@nwafu.edu.cn.
4
College of Landscape Architecture & Arts, Northwest A&F University, Yangling 712100, China. xuminstudy@nwafu.edu.cn.
5
College of Landscape Architecture & Arts, Northwest A&F University, Yangling 712100, China. niujq@nwafu.edu.cn.

Abstract

This study used computational fluid dynamics (CFD) models, coupling with a standard k-ε model based on the Reynolds-averaged Navier-Stokes (RANS) approach and a revised generalized drift flux model, to investigate effects of outdoor trees on indoor PM1.0, PM2.5, and PM10 dispersion in a naturally ventilated auditorium. Crown volume coverage (CVC) was introduced to quantify outdoor trees. Simulations were performed on various CVCs, oncoming wind velocities and window opening sizes (wall porosities were 3.5 and 7.0%, respectively, for half and fully opened windows). The results were as follows: (1) A vortex formed inside the auditorium in the baseline scenario, and the airflow recirculation created a well-mixed zone with little variation in particle concentrations. There was a noticeable decrease in indoor PM10 with the increasing distance from the inlet boundary due to turbulent diffusion. (2) Assuming that pollution sources were diluted through the inlet, average indoor particle concentrations rose exponentially with increasing oncoming wind speed. PM10 changed most significantly due to turbulent diffusion and surface deposition reduction intensified by the increased wind velocity. (3) Increasing the window opening improved indoor cross-ventilation, thus reducing indoor particle concentrations. (4) When 2.87 m³/m² ≤ CVC ≤ 4.73 m³/m², indoor PM2.5 could meet requirements of the World Health Organization's air quality guidelines (IT-3) for 24-hour mean concentrations; and (5) average indoor particle concentrations had positive correlations with natural ventilation rates (R² = 0.9085, 0.961, 0.9683 for PM1.0, PM2.5, and PM10, respectively, when the wall porosity was 3.5%; R² = 0.9158, 0.9734, 0.976 for PM1.0, PM2.5, and PM10, respectively, when the wall porosity was 7.0%).

KEYWORDS:

auditorium; computational fluid dynamics (CFD); indoor air quality; natural ventilation potential; particulate matter (PM1.0, PM2.5 and PM10); trees

PMID:
30558174
PMCID:
PMC6313354
DOI:
10.3390/ijerph15122862
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Multidisciplinary Digital Publishing Institute (MDPI) Icon for PubMed Central
Loading ...
Support Center