Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 39

1.

Fungal Cytochrome P450s and the P450 Complement (CYPome) of Fusarium graminearum.

Shin J, Kim JE, Lee YW, Son H.

Toxins (Basel). 2018 Mar 7;10(3). pii: E112. doi: 10.3390/toxins10030112. Review.

2.

Chemosensitization of Fusarium graminearum to Chemical Fungicides Using Cyclic Lipopeptides Produced by Bacillus amyloliquefaciens Strain JCK-12.

Kim K, Lee Y, Ha A, Kim JI, Park AR, Yu NH, Son H, Choi GJ, Park HW, Lee CW, Lee T, Lee YW, Kim JC.

Front Plant Sci. 2017 Nov 27;8:2010. doi: 10.3389/fpls.2017.02010. eCollection 2017.

3.

Roles of three Fusarium graminearum membrane Ca2+ channels in the formation of Ca2+ signatures, growth, development, pathogenicity and mycotoxin production.

Kim HS, Kim JE, Son H, Frailey D, Cirino R, Lee YW, Duncan R, Czymmek KJ, Kang S.

Fungal Genet Biol. 2018 Feb;111:30-46. doi: 10.1016/j.fgb.2017.11.005. Epub 2017 Nov 22.

PMID:
29175365
4.

Comprehensive analysis of fungal diversity and enzyme activity in nuruk, a Korean fermenting starter, for acquiring useful fungi.

Carroll E, Trinh TN, Son H, Lee YW, Seo JA.

J Microbiol. 2017 May;55(5):357-365. doi: 10.1007/s12275-017-7114-z. Epub 2017 Apr 29.

PMID:
28455587
5.

Genome-wide functional characterization of putative peroxidases in the head blight fungus Fusarium graminearum.

Lee Y, Son H, Shin JY, Choi GJ, Lee YW.

Mol Plant Pathol. 2018 Mar;19(3):715-730. doi: 10.1111/mpp.12557. Epub 2017 May 2.

PMID:
28387997
6.

Functional characterization of cytochrome P450 monooxygenases in the cereal head blight fungus Fusarium graminearum.

Shin JY, Bui DC, Lee Y, Nam H, Jung S, Fang M, Kim JC, Lee T, Kim H, Choi GJ, Son H, Lee YW.

Environ Microbiol. 2017 May;19(5):2053-2067. doi: 10.1111/1462-2920.13730. Epub 2017 Apr 12.

PMID:
28296081
7.

Genome-wide exonic small interference RNA-mediated gene silencing regulates sexual reproduction in the homothallic fungus Fusarium graminearum.

Son H, Park AR, Lim JY, Shin C, Lee YW.

PLoS Genet. 2017 Feb 1;13(2):e1006595. doi: 10.1371/journal.pgen.1006595. eCollection 2017 Feb.

8.

Heat shock protein 90 is required for sexual and asexual development, virulence, and heat shock response in Fusarium graminearum.

Bui DC, Lee Y, Lim JY, Fu M, Kim JC, Choi GJ, Son H, Lee YW.

Sci Rep. 2016 Jun 16;6:28154. doi: 10.1038/srep28154.

9.

Utilization of a Conidia-Deficient Mutant to Study Sexual Development in Fusarium graminearum.

Son H, Lim JY, Lee Y, Lee YW.

PLoS One. 2016 May 13;11(5):e0155671. doi: 10.1371/journal.pone.0155671. eCollection 2016.

10.

The Protein Kinase A Pathway Regulates Zearalenone Production by Modulating Alternative ZEB2 Transcription.

Park AR, Fu M, Shin JY, Son H, Lee YW.

J Microbiol Biotechnol. 2016 May 28;26(5):967-74. doi: 10.4014/jmb.1601.01032.

11.

A novel transcription factor gene FHS1 is involved in the DNA damage response in Fusarium graminearum.

Son H, Fu M, Lee Y, Lim JY, Min K, Kim JC, Choi GJ, Lee YW.

Sci Rep. 2016 Feb 18;6:21572. doi: 10.1038/srep21572.

12.

The FgNot3 Subunit of the Ccr4-Not Complex Regulates Vegetative Growth, Sporulation, and Virulence in Fusarium graminearum.

Bui DC, Son H, Shin JY, Kim JC, Kim H, Choi GJ, Lee YW.

PLoS One. 2016 Jan 22;11(1):e0147481. doi: 10.1371/journal.pone.0147481. eCollection 2016.

13.

Transcription factor ART1 mediates starch hydrolysis and mycotoxin production in Fusarium graminearum and F. verticillioides.

Oh M, Son H, Choi GJ, Lee C, Kim JC, Kim H, Lee YW.

Mol Plant Pathol. 2016 Jun;17(5):755-68. doi: 10.1111/mpp.12328. Epub 2015 Dec 4.

PMID:
26456718
14.

Autoregulation of ZEB2 expression for zearalenone production in Fusarium graminearum.

Park AR, Son H, Min K, Park J, Goo JH, Rhee S, Chae SK, Lee YW.

Mol Microbiol. 2015 Sep;97(5):942-56. doi: 10.1111/mmi.13078. Epub 2015 Jun 25.

15.

Fss1 is involved in the regulation of an ENA5 homologue for sodium and lithium tolerance in Fusarium graminearum.

Son H, Park AR, Lim JY, Lee YW.

Environ Microbiol. 2015 Jun;17(6):2048-63. doi: 10.1111/1462-2920.12757. Epub 2015 Mar 4.

PMID:
25627458
16.

A Putative Transcription Factor pcs1 Positively Regulates Both Conidiation and Sexual Reproduction in the Cereal Pathogen Fusarium graminearum.

Jung B, Park J, Son H, Lee YW, Seo YS, Lee J.

Plant Pathol J. 2014 Sep;30(3):236-44. doi: 10.5423/PPJ.OA.04.2014.0037.

17.

FgFlbD regulates hyphal differentiation required for sexual and asexual reproduction in the ascomycete fungus Fusarium graminearum.

Son H, Kim MG, Chae SK, Lee YW.

J Microbiol. 2014 Nov;52(11):930-9. doi: 10.1007/s12275-014-4384-6. Epub 2014 Oct 3.

PMID:
25277408
18.

ELP3 is involved in sexual and asexual development, virulence, and the oxidative stress response in Fusarium graminearum.

Lee Y, Min K, Son H, Park AR, Kim JC, Choi GJ, Lee YW.

Mol Plant Microbe Interact. 2014 Dec;27(12):1344-55. doi: 10.1094/MPMI-05-14-0145-R.

19.

MYT3, a Myb-like transcription factor, affects fungal development and pathogenicity of Fusarium graminearum.

Kim Y, Kim H, Son H, Choi GJ, Kim JC, Lee YW.

PLoS One. 2014 Apr 10;9(4):e94359. doi: 10.1371/journal.pone.0094359. eCollection 2014.

20.

Transcription factor RFX1 is crucial for maintenance of genome integrity in Fusarium graminearum.

Min K, Son H, Lim JY, Choi GJ, Kim JC, Harris SD, Lee YW.

Eukaryot Cell. 2014 Mar;13(3):427-36. doi: 10.1128/EC.00293-13. Epub 2014 Jan 24.

Supplemental Content

Loading ...
Support Center