Format

Send to

Choose Destination
  • Showing results for girma kelbore. Search instead for Girma Kelboro (0)
Lancet. 2017 Sep 16;390(10100):1084-1150. doi: 10.1016/S0140-6736(17)31833-0.

Global, regional, and national under-5 mortality, adult mortality, age-specific mortality, and life expectancy, 1970-2016: a systematic analysis for the Global Burden of Disease Study 2016.

Collaborators (783)

Wang H, Abajobir AA, Abate KH, Abbafati C, Abbas KM, Abd-Allah F, Abera SF, Abraha HN, Abu-Raddad LJ, Abu-Rmeileh NME, Adedeji IA, Adedoyin RA, Adetifa IMO, Adetokunboh O, Afshin A, Aggarwal R, Agrawal A, Agrawal S, Ahmad Kiadaliri A, Ahmed MB, Aichour MTE, Aichour AN, Aichour I, Aiyar S, Akanda AS, Akinyemiju TF, Akseer N, Al Lami FH, Alabed S, Alahdab F, Al-Aly Z, Alam K, Alam N, Alasfoor D, Aldridge RW, Alene KA, Al-Eyadhy A, Alhabib S, Ali R, Alizadeh-Navaei R, Aljunid SM, Alkaabi JM, Alkerwi A, Alla F, Allam SD, Allebeck P, Al-Raddadi R, Alsharif U, Altirkawi KA, Alvis-Guzman N, Amare AT, Ameh EA, Amini E, Ammar W, Amoako YA, Anber N, Andrei CL, Androudi S, Ansari H, Ansha MG, Antonio CAT, Anwari P, Ärnlöv J, Arora M, Artaman A, Aryal KK, Asayesh H, Asgedom SW, Asghar RJ, Assadi R, Assaye AM, Atey TM, Atre SR, Avila-Burgos L, Avokpaho EFGA, Awasthi A, Babalola TK, Bacha U, Badawi A, Balakrishnan K, Balalla S, Barac A, Barber RM, Barboza MA, Barker-Collo SL, Bärnighausen T, Barquera S, Barregard L, Barrero LH, Baune BT, Bazargan-Hejazi S, Bedi N, Beghi E, Béjot Y, Bekele BB, Bell ML, Bello AK, Bennett DA, Bennett JR, Bensenor IM, Benson J, Berhane A, Berhe DF, Bernabé E, Beuran M, Beyene AS, Bhala N, Bhansali A, Bhaumik S, Bhutta ZA, Bicer BK, Bidgoli HH, Bikbov B, Birungi C, Biryukov S, Bisanzio D, Bizuayehu HM, Bjerregaard P, Blosser CD, Boneya DJ, Boufous S, Bourne RRA, Brazinova A, Breitborde NJK, Brenner H, Brugha TS, Bukhman G, Bulto LNB, Bumgarner BR, Burch M, Butt ZA, Cahill LE, Cahuana-Hurtado L, Campos-Nonato IR, Car J, Car M, Cárdenas R, Carpenter DO, Carrero JJ, Carter A, Castañeda-Orjuela CA, Castro FF, Castro RE, Catalá-López F, Chen H, Chiang PP, Chibalabala M, Chisumpa VH, Chitheer AA, Choi JJ, Christensen H, Christopher DJ, Ciobanu LG, Cirillo M, Cohen AJ, Colquhoun SM, Coresh J, Criqui MH, Cromwell EA, Crump JA, Dandona L, Dandona R, Dargan PI, das Neves J, Davey G, Davitoiu DV, Davletov K, de Courten B, De Leo D, Degenhardt L, Deiparine S, Dellavalle RP, Deribe K, Deribew A, Des Jarlais DC, Dey S, Dharmaratne SD, Dherani MK, Diaz-Torné C, Ding EL, Dixit P, Djalalinia S, Do HP, Doku DT, Donnelly CA, Dos Santos KPB, Douwes-Schultz D, Driscoll TR, Duan L, Dubey M, Duncan BB, Dwivedi LK, Ebrahimi H, El Bcheraoui C, Ellingsen CL, Enayati A, Endries AY, Ermakov SP, Eshetie S, Eshrati B, Eskandarieh S, Esteghamati A, Estep K, Fanuel FBB, Faro A, Farvid MS, Farzadfar F, Feigin VL, Fereshtehnejad SM, Fernandes JG, Fernandes JC, Feyissa TR, Filip I, Fischer F, Foigt N, Foreman KJ, Frank T, Franklin RC, Fraser M, Friedman J, Frostad JJ, Fullman N, Fürst T, Furtado JM, Futran ND, Gakidou E, Gambashidze K, Gamkrelidze A, Gankpé FG, Garcia-Basteiro AL, Gebregergs GB, Gebrehiwot TT, Gebrekidan KG, Gebremichael MW, Gelaye AA, Geleijnse JM, Gemechu BL, Gemechu KS, Genova-Maleras R, Gesesew HA, Gething PW, Gibney KB, Gill PS, Gillum RF, Giref AZ, Girma BW, Giussani G, Goenka S, Gomez B, Gona PN, Gopalani SV, Goulart AC, Graetz N, Gugnani HC, Gupta PC, Gupta R, Gupta R, Gupta T, Gupta V, Haagsma JA, Hafezi-Nejad N, Hakuzimana A, Halasa YA, Hamadeh RR, Hambisa MT, Hamidi S, Hammami M, Hancock J, Handal AJ, Hankey GJ, Hao Y, Harb HL, Hareri HA, Harikrishnan S, Haro JM, Hassanvand MS, Havmoeller R, Hay RJ, Hay SI, He F, Heredia-Pi IB, Herteliu C, Hilawe EH, Hoek HW, Horita N, Hosgood HD, Hostiuc S, Hotez PJ, Hoy DG, Hsairi M, Htet AS, Hu G, Huang JJ, Huang H, Iburg KM, Igumbor EU, Ileanu BV, Inoue M, Irenso AA, Irvine CMS, Islam SMS, Islam N, Jacobsen KH, Jaenisch T, Jahanmehr N, Jakovljevic MB, Javanbakht M, Jayatilleke AU, Jeemon P, Jensen PN, Jha V, Jin Y, John D, John O, Johnson SC, Jonas JB, Jürisson M, Kabir Z, Kadel R, Kahsay A, Kalkonde Y, Kamal R, Kan H, Karch A, Karema CK, Karimi SM, Karthikeyan G, Kasaeian A, Kassaw NA, Kassebaum NJ, Kastor A, Katikireddi SV, Kaul A, Kawakami N, Kazanjan K, Keiyoro PN, Kelbore SG, Kemp AH, Kengne AP, Keren A, Kereselidze M, Kesavachandran CN, Ketema EB, Khader YS, Khalil IA, Khan EA, Khan G, Khang YH, Khera S, Khoja ATA, Khosravi MH, Kibret GD, Kieling C, Kim YJ, Kim CI, Kim D, Kim P, Kim S, Kimokoti RW, Kinfu Y, Kishawi S, Kissoon N, Kivimaki M, Knudsen AK, Kokubo Y, Kopec JA, Kosen S, Koul PA, Koyanagi A, Kravchenko M, Krohn KJ, Kuate Defo B, Kuipers EJ, Kulikoff XR, Kulkarni VS, Kumar GA, Kumar P, Kumsa FA, Kutz M, Lachat C, Lagat AK, Lager ACJ, Lal DK, Lalloo R, Lambert N, Lan Q, Lansingh VC, Larson HJ, Larsson A, Laryea DO, Lavados PM, Laxmaiah A, Lee PH, Leigh J, Leung J, Leung R, Levi M, Li Y, Liao Y, Liben ML, Lim SS, Linn S, Lipshultz SE, Liu S, Lodha R, Logroscino G, Lorch SA, Lorkowski S, Lotufo PA, Lozano R, Lunevicius R, Lyons RA, Ma S, Macarayan ER, Machado IE, Mackay MT, Magdy Abd El Razek M, Magis-Rodriguez C, Mahdavi M, Majdan M, Majdzadeh R, Majeed A, Malekzadeh R, Malhotra R, Malta DC, Mantovani LG, Manyazewal T, Mapoma CC, Marczak LB, Marks GB, Martin EA, Martinez-Raga J, Martins-Melo FR, Massano J, Maulik PK, Mayosi BM, Mazidi M, McAlinden C, McGarvey ST, McGrath JJ, McKee M, Mehata S, Mehndiratta MM, Mehta KM, Meier T, Mekonnen TC, Meles KG, Memiah P, Memish ZA, Mendoza W, Mengesha MM, Mengistie MA, Mengistu DT, Menon GR, Menota BG, Mensah GA, Meretoja TJ, Meretoja A, Mezgebe HB, Micha R, Mikesell J, Miller TR, Mills EJ, Minnig S, Mirarefin M, Mirrakhimov EM, Misganaw A, Mishra SR, Mohammad KA, Mohammadi A, Mohammed KE, Mohammed S, Mohan MBV, Mohanty SK, Mokdad AH, Mollenkopf SK, Molokhia M, Monasta L, Montañez Hernandez JC, Montico M, Mooney MD, Moore AR, Moradi-Lakeh M, Moraga P, Morawska L, Mori R, Morrison SD, Mruts KB, Mueller UO, Mullany E, Muller K, Murthy GVS, Murthy S, Musa KI, Nachega JB, Nagata C, Nagel G, Naghavi M, Naidoo KS, Nanda L, Nangia V, Nascimento BR, Natarajan G, Negoi I, Nguyen CT, Nguyen QL, Nguyen TH, Nguyen G, Ningrum DNA, Nisar MI, Nomura M, Nong VM, Norheim OF, Norrving B, Noubiap JJN, Nyakarahuka L, O'Donnell MJ, Obermeyer CM, Ogbo FA, Oh IH, Okoro A, Oladimeji O, Olagunju AT, Olusanya BO, Olusanya JO, Oren E, Ortiz A, Osgood-Zimmerman A, Ota E, Owolabi MO, Oyekale AS, Pa M, Pacella RE, Pakhale S, Pana A, Panda BK, Panda-Jonas S, Park EK, Parsaeian M, Patel T, Patten SB, Patton GC, Paudel D, Pereira DM, Perez-Padilla R, Perez-Ruiz F, Perico N, Pervaiz A, Pesudovs K, Peterson CB, Petri WA, Petzold M, Phillips MR, Piel FB, Pigott DM, Pishgar F, Plass D, Polinder S, Popova S, Postma MJ, Poulton RG, Pourmalek F, Prasad N, Purwar M, Qorbani M, Quintanilla BPA, Rabiee RHS, Radfar A, Rafay A, Rahimi-Movaghar A, Rahimi-Movaghar V, Rahman MHU, Rahman SU, Rahman M, Rai RK, Rajsic S, Ram U, Rana SM, Ranabhat CL, Rao PV, Rawaf S, Ray SE, Rego MAS, Rehm J, Reiner RC, Remuzzi G, Renzaho AMN, Resnikoff S, Rezaei S, Rezai MS, Ribeiro AL, Rivas JC, Rokni MB, Ronfani L, Roshandel G, Roth GA, Rothenbacher D, Roy A, Rubagotti E, Ruhago GM, Saadat S, Sabde YD, Sachdev PS, Sadat N, Safdarian M, Safi S, Safiri S, Sagar R, Sahathevan R, Sahebkar A, Sahraian MA, Salama J, Salamati P, Salomon JA, Salvi SS, Samy AM, Sanabria JR, Sanchez-Niño MD, Santos IS, Santric Milicevic MM, Sarmiento-Suarez R, Sartorius B, Satpathy M, Sawhney M, Saxena S, Saylan MI, Schmidt MI, Schneider IJC, Schulhofer-Wohl S, Schutte AE, Schwebel DC, Schwendicke F, Seedat S, Seid AM, Sepanlou SG, Servan-Mori EE, Shackelford KA, Shaheen A, Shahraz S, Shaikh MA, Shamsipour M, Shamsizadeh M, Sharma J, Sharma R, She J, Shen J, Shetty BP, Shi P, Shibuya K, Shifa GT, Shigematsu M, Shiri R, Shiue I, Shrime MG, Sigfusdottir ID, Silberberg DH, Silpakit N, Silva DAS, Silva JP, Silveira DGA, Sindi S, Singh JA, Singh PK, Singh A, Singh V, Sinha DN, Skarbek KAK, Skiadaresi E, Sligar A, Smith DL, Sobaih BHA, Sobngwi E, Soneji S, Soriano JB, Sreeramareddy CT, Srinivasan V, Stathopoulou V, Steel N, Stein DJ, Steiner C, Stöckl H, Stokes MA, Strong M, Sufiyan MB, Suliankatchi RA, Sunguya BF, Sur PJ, Swaminathan S, Sykes BL, Szoeke CEI, Tabarés-Seisdedos R, Tadakamadla SK, Tadese F, Tandon N, Tanne D, Tarajia M, Tavakkoli M, Taveira N, Tehrani-Banihashemi A, Tekelab T, Tekle DY, Temsah MH, Terkawi AS, Tesema CL, Tesssema B, Theis A, Thomas N, Thompson AH, Thomson AJ, Thrift AG, Tiruye TY, Tobe-Gai R, Tonelli M, Topor-Madry R, Topouzis F, Tortajada M, Tran BX, Truelsen T, Trujillo U, Tsilimparis N, Tuem KB, Tuzcu EM, Tyrovolas S, Ukwaja KN, Undurraga EA, Uthman OA, Uzochukwu BSC, van Boven JFM, Varakin YY, Varughese S, Vasankari T, Vasconcelos AMN, Velasquez IM, Venketasubramanian N, Vidavalur R, Violante FS, Vishnu A, Vladimirov SK, Vlassov VV, Vollset SE, Vos T, Waid JL, Wakayo T, Wang YP, Weichenthal S, Weiderpass E, Weintraub RG, Werdecker A, Wesana J, Wijeratne T, Wilkinson JD, Wiysonge CS, Woldeyes BG, Wolfe CDA, Workicho A, Workie SB, Xavier D, Xu G, Yaghoubi M, Yakob B, Yalew AZ, Yan LL, Yano Y, Yaseri M, Ye P, Yimam HH, Yip P, Yirsaw BD, Yonemoto N, Yoon SJ, Yotebieng M, Younis MZ, Zaidi Z, Zaki MES, Zeeb H, Zenebe ZM, Zerfu TA, Zhang AL, Zhang X, Zodpey S, Zuhlke LJ, Lopez AD, Murray CJL.

Erratum in

Abstract

BACKGROUND:

Detailed assessments of mortality patterns, particularly age-specific mortality, represent a crucial input that enables health systems to target interventions to specific populations. Understanding how all-cause mortality has changed with respect to development status can identify exemplars for best practice. To accomplish this, the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) estimated age-specific and sex-specific all-cause mortality between 1970 and 2016 for 195 countries and territories and at the subnational level for the five countries with a population greater than 200 million in 2016.

METHODS:

We have evaluated how well civil registration systems captured deaths using a set of demographic methods called death distribution methods for adults and from consideration of survey and census data for children younger than 5 years. We generated an overall assessment of completeness of registration of deaths by dividing registered deaths in each location-year by our estimate of all-age deaths generated from our overall estimation process. For 163 locations, including subnational units in countries with a population greater than 200 million with complete vital registration (VR) systems, our estimates were largely driven by the observed data, with corrections for small fluctuations in numbers and estimation for recent years where there were lags in data reporting (lags were variable by location, generally between 1 year and 6 years). For other locations, we took advantage of different data sources available to measure under-5 mortality rates (U5MR) using complete birth histories, summary birth histories, and incomplete VR with adjustments; we measured adult mortality rate (the probability of death in individuals aged 15-60 years) using adjusted incomplete VR, sibling histories, and household death recall. We used the U5MR and adult mortality rate, together with crude death rate due to HIV in the GBD model life table system, to estimate age-specific and sex-specific death rates for each location-year. Using various international databases, we identified fatal discontinuities, which we defined as increases in the death rate of more than one death per million, resulting from conflict and terrorism, natural disasters, major transport or technological accidents, and a subset of epidemic infectious diseases; these were added to estimates in the relevant years. In 47 countries with an identified peak adult prevalence for HIV/AIDS of more than 0·5% and where VR systems were less than 65% complete, we informed our estimates of age-sex-specific mortality using the Estimation and Projection Package (EPP)-Spectrum model fitted to national HIV/AIDS prevalence surveys and antenatal clinic serosurveillance systems. We estimated stillbirths, early neonatal, late neonatal, and childhood mortality using both survey and VR data in spatiotemporal Gaussian process regression models. We estimated abridged life tables for all location-years using age-specific death rates. We grouped locations into development quintiles based on the Socio-demographic Index (SDI) and analysed mortality trends by quintile. Using spline regression, we estimated the expected mortality rate for each age-sex group as a function of SDI. We identified countries with higher life expectancy than expected by comparing observed life expectancy to anticipated life expectancy on the basis of development status alone.

FINDINGS:

Completeness in the registration of deaths increased from 28% in 1970 to a peak of 45% in 2013; completeness was lower after 2013 because of lags in reporting. Total deaths in children younger than 5 years decreased from 1970 to 2016, and slower decreases occurred at ages 5-24 years. By contrast, numbers of adult deaths increased in each 5-year age bracket above the age of 25 years. The distribution of annualised rates of change in age-specific mortality rate differed over the period 2000 to 2016 compared with earlier decades: increasing annualised rates of change were less frequent, although rising annualised rates of change still occurred in some locations, particularly for adolescent and younger adult age groups. Rates of stillbirths and under-5 mortality both decreased globally from 1970. Evidence for global convergence of death rates was mixed; although the absolute difference between age-standardised death rates narrowed between countries at the lowest and highest levels of SDI, the ratio of these death rates-a measure of relative inequality-increased slightly. There was a strong shift between 1970 and 2016 toward higher life expectancy, most noticeably at higher levels of SDI. Among countries with populations greater than 1 million in 2016, life expectancy at birth was highest for women in Japan, at 86·9 years (95% UI 86·7-87·2), and for men in Singapore, at 81·3 years (78·8-83·7) in 2016. Male life expectancy was generally lower than female life expectancy between 1970 and 2016, and the gap between male and female life expectancy increased with progression to higher levels of SDI. Some countries with exceptional health performance in 1990 in terms of the difference in observed to expected life expectancy at birth had slower progress on the same measure in 2016.

INTERPRETATION:

Globally, mortality rates have decreased across all age groups over the past five decades, with the largest improvements occurring among children younger than 5 years. However, at the national level, considerable heterogeneity remains in terms of both level and rate of changes in age-specific mortality; increases in mortality for certain age groups occurred in some locations. We found evidence that the absolute gap between countries in age-specific death rates has declined, although the relative gap for some age-sex groups increased. Countries that now lead in terms of having higher observed life expectancy than that expected on the basis of development alone, or locations that have either increased this advantage or rapidly decreased the deficit from expected levels, could provide insight into the means to accelerate progress in nations where progress has stalled.

FUNDING:

Bill & Melinda Gates Foundation, and the National Institute on Aging and the National Institute of Mental Health of the National Institutes of Health.

PMID:
28919115
PMCID:
PMC5605514
DOI:
10.1016/S0140-6736(17)31833-0
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center