Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 23

1.

Magnetic Graphene Oxide Nanocarrier for Targeted Delivery of Cisplatin: A Perspective for Glioblastoma Treatment.

Makharza SA, Cirillo G, Vittorio O, Valli E, Voli F, Farfalla A, Curcio M, Iemma F, Nicoletta FP, El-Gendy AA, Goya GF, Hampel S.

Pharmaceuticals (Basel). 2019 May 18;12(2). pii: E76. doi: 10.3390/ph12020076.

2.

The relevance of Brownian relaxation as power absorption mechanism in Magnetic Hyperthermia.

Torres TE, Lima E Jr, Calatayud MP, Sanz B, Ibarra A, Fernández-Pacheco R, Mayoral A, Marquina C, Ibarra MR, Goya GF.

Sci Rep. 2019 Mar 8;9(1):3992. doi: 10.1038/s41598-019-40341-y.

3.

Graphene Oxide Functional Nanohybrids with Magnetic Nanoparticles for Improved Vectorization of Doxorubicin to Neuroblastoma Cells.

Lerra L, Farfalla A, Sanz B, Cirillo G, Vittorio O, Voli F, Le Grand M, Curcio M, Nicoletta FP, Dubrovska A, Hampel S, Iemma F, Goya GF.

Pharmaceutics. 2018 Dec 22;11(1). pii: E3. doi: 10.3390/pharmaceutics11010003.

4.

Controlling the dominant magnetic relaxation mechanisms for magnetic hyperthermia in bimagnetic core-shell nanoparticles.

Fabris F, Lima E, De Biasi E, Troiani HE, Vásquez Mansilla M, Torres TE, Fernández Pacheco R, Ibarra MR, Goya GF, Zysler RD, Winkler EL.

Nanoscale. 2019 Feb 14;11(7):3164-3172. doi: 10.1039/c8nr07834c.

PMID:
30520920
5.

Piconewton Mechanical Forces Promote Neurite Growth.

Raffa V, Falcone F, De Vincentiis S, Falconieri A, Calatayud MP, Goya GF, Cuschieri A.

Biophys J. 2018 Nov 20;115(10):2026-2033. doi: 10.1016/j.bpj.2018.10.009. Epub 2018 Oct 16.

6.

Tuning Properties of Iron Oxide Nanoparticles in Aqueous Synthesis without Ligands to Improve MRI Relaxivity and SAR.

Bonvin D, Alexander DTL, Millán A, Piñol R, Sanz B, Goya GF, Martínez A, Bastiaansen JAM, Stuber M, Schenk KJ, Hofmann H, Mionić Ebersold M.

Nanomaterials (Basel). 2017 Aug 18;7(8). pii: E225. doi: 10.3390/nano7080225.

7.

Cell damage produced by magnetic fluid hyperthermia on microglial BV2 cells.

Calatayud MP, Soler E, Torres TE, Campos-Gonzalez E, Junquera C, Ibarra MR, Goya GF.

Sci Rep. 2017 Aug 17;7(1):8627. doi: 10.1038/s41598-017-09059-7.

8.

Polyphenols delivery by polymeric materials: challenges in cancer treatment.

Vittorio O, Curcio M, Cojoc M, Goya GF, Hampel S, Iemma F, Dubrovska A, Cirillo G.

Drug Deliv. 2017 Nov;24(1):162-180. doi: 10.1080/10717544.2016.1236846. Review.

PMID:
28156178
9.

Magnetic Nanoparticles for Efficient Delivery of Growth Factors: Stimulation of Peripheral Nerve Regeneration.

Giannaccini M, Calatayud MP, Poggetti A, Corbianco S, Novelli M, Paoli M, Battistini P, Castagna M, Dente L, Parchi P, Lisanti M, Cavallini G, Junquera C, Goya GF, Raffa V.

Adv Healthc Mater. 2017 Apr;6(7). doi: 10.1002/adhm.201601429. Epub 2017 Feb 3.

PMID:
28156059
10.

Chitosan nanoparticles for combined drug delivery and magnetic hyperthermia: From preparation to in vitro studies.

Zamora-Mora V, Fernández-Gutiérrez M, González-Gómez Á, Sanz B, Román JS, Goya GF, Hernández R, Mijangos C.

Carbohydr Polym. 2017 Feb 10;157:361-370. doi: 10.1016/j.carbpol.2016.09.084. Epub 2016 Sep 28.

PMID:
27987939
11.

In Silico before In Vivo: how to Predict the Heating Efficiency of Magnetic Nanoparticles within the Intracellular Space.

Sanz B, Calatayud MP, De Biasi E, Lima E Jr, Mansilla MV, Zysler RD, Ibarra MR, Goya GF.

Sci Rep. 2016 Dec 7;6:38733. doi: 10.1038/srep38733.

12.

Magnetic hyperthermia enhances cell toxicity with respect to exogenous heating.

Sanz B, Calatayud MP, Torres TE, Fanarraga ML, Ibarra MR, Goya GF.

Biomaterials. 2017 Jan;114:62-70. doi: 10.1016/j.biomaterials.2016.11.008. Epub 2016 Nov 9.

PMID:
27846403
13.

Evaluation of In-Situ Magnetic Signals from Iron Oxide Nanoparticle-Labeled PC12 Cells by Atomic Force Microscopy.

Wang L, Min Y, Wang Z, Riggio C, Calatayud MP, Pinkernelle J, Raffa V, Goya GF, Keilhoff G, Cuschieri A.

J Biomed Nanotechnol. 2015 Mar;11(3):457-68.

PMID:
26307828
14.

The effect of surface charge of functionalized Fe3O4 nanoparticles on protein adsorption and cell uptake.

Calatayud MP, Sanz B, Raffa V, Riggio C, Ibarra MR, Goya GF.

Biomaterials. 2014 Aug;35(24):6389-99. doi: 10.1016/j.biomaterials.2014.04.009. Epub 2014 May 9.

PMID:
24816288
15.

Magnetic nanoparticles as intraocular drug delivery system to target retinal pigmented epithelium (RPE).

Giannaccini M, Giannini M, Calatayud MP, Goya GF, Cuschieri A, Dente L, Raffa V.

Int J Mol Sci. 2014 Jan 22;15(1):1590-605. doi: 10.3390/ijms15011590.

16.

The orientation of the neuronal growth process can be directed via magnetic nanoparticles under an applied magnetic field.

Riggio C, Calatayud MP, Giannaccini M, Sanz B, Torres TE, Fernández-Pacheco R, Ripoli A, Ibarra MR, Dente L, Cuschieri A, Goya GF, Raffa V.

Nanomedicine. 2014 Oct;10(7):1549-58. doi: 10.1016/j.nano.2013.12.008. Epub 2014 Jan 7.

PMID:
24407149
17.

Cell death induced by AC magnetic fields and magnetic nanoparticles: current state and perspectives.

Goya GF, Asín L, Ibarra MR.

Int J Hyperthermia. 2013 Dec;29(8):810-8. doi: 10.3109/02656736.2013.838646. Epub 2013 Oct 16. Review.

PMID:
24131333
18.

Fluorescent Magnetic Bioprobes by Surface Modification of Magnetite Nanoparticles.

Pinheiro PC, Daniel-da-Silva AL, Tavares DS, Calatayud MP, Goya GF, Trindade T.

Materials (Basel). 2013 Jul 31;6(8):3213-3225. doi: 10.3390/ma6083213.

19.

Magnetically-driven selective synthesis of Au clusters on Fe3O4 nanoparticles.

Sebastian V, Calatayud MP, Goya GF, Santamaria J.

Chem Commun (Camb). 2013 Jan 25;49(7):716-8. doi: 10.1039/c2cc37355f.

PMID:
23223273
20.

Magnetic field-assisted gene delivery: achievements and therapeutic potential.

Schwerdt JI, Goya GF, Calatayud MP, Hereñú CB, Reggiani PC, Goya RG.

Curr Gene Ther. 2012 Apr 1;12(2):116-26. Review.

PMID:
22348552

Supplemental Content

Loading ...
Support Center