Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 109

1.

Global ecosystem thresholds driven by aridity.

Berdugo M, Delgado-Baquerizo M, Soliveres S, Hernández-Clemente R, Zhao Y, Gaitán JJ, Gross N, Saiz H, Maire V, Lehmann A, Rillig MC, Solé RV, Maestre FT.

Science. 2020 Feb 14;367(6479):787-790. doi: 10.1126/science.aay5958.

PMID:
32054762
2.

Synthetic Biology for Terraformation Lessons from Mars, Earth, and the Microbiome.

Conde-Pueyo N, Vidiella B, Sardanyés J, Berdugo M, Maestre FT, De Lorenzo V, Solé R.

Life (Basel). 2020 Feb 9;10(2). pii: E14. doi: 10.3390/life10020014.

3.

The global-scale distributions of soil protists and their contributions to belowground systems.

Oliverio AM, Geisen S, Delgado-Baquerizo M, Maestre FT, Turner BL, Fierer N.

Sci Adv. 2020 Jan 24;6(4):eaax8787. doi: 10.1126/sciadv.aax8787. eCollection 2020 Jan.

4.

Recommendations for establishing global collaborative networks in soil ecology.

Maestre FT, Eisenhauer N.

Soil Org. 2019 Dec 1;91(3):73-85. doi: 10.25674/so91iss3pp73.

5.

A Global Survey of Mycobacterial Diversity in Soil.

Walsh CM, Gebert MJ, Delgado-Baquerizo M, Maestre FT, Fierer N.

Appl Environ Microbiol. 2019 Aug 14;85(17). pii: e01180-19. doi: 10.1128/AEM.01180-19. Print 2019 Sep 1.

6.

Plant-driven niche differentiation of ammonia-oxidizing bacteria and archaea in global drylands.

Trivedi C, Reich PB, Maestre FT, Hu HW, Singh BK, Delgado-Baquerizo M.

ISME J. 2019 Nov;13(11):2727-2736. doi: 10.1038/s41396-019-0465-1. Epub 2019 Jun 27.

PMID:
31249390
7.

Increasing microbial carbon use efficiency with warming predicts soil heterotrophic respiration globally.

Ye JS, Bradford MA, Dacal M, Maestre FT, García-Palacios P.

Glob Chang Biol. 2019 Oct;25(10):3354-3364. doi: 10.1111/gcb.14738. Epub 2019 Jul 24.

PMID:
31216082
8.

A few Ascomycota taxa dominate soil fungal communities worldwide.

Egidi E, Delgado-Baquerizo M, Plett JM, Wang J, Eldridge DJ, Bardgett RD, Maestre FT, Singh BK.

Nat Commun. 2019 May 30;10(1):2369. doi: 10.1038/s41467-019-10373-z.

9.

Aridity and reduced soil micronutrient availability in global drylands.

Moreno-Jiménez E, Plaza C, Saiz H, Manzano R, Flagmeier M, Maestre FT.

Nat Sustain. 2019 May;2(5):371-377. doi: 10.1038/s41893-019-0262-x. Epub 2019 Apr 1.

10.

Ten simple rules towards healthier research labs.

Maestre FT.

PLoS Comput Biol. 2019 Apr 11;15(4):e1006914. doi: 10.1371/journal.pcbi.1006914. eCollection 2019 Apr.

11.

Phylogenetic, functional, and taxonomic richness have both positive and negative effects on ecosystem multifunctionality.

Le Bagousse-Pinguet Y, Soliveres S, Gross N, Torices R, Berdugo M, Maestre FT.

Proc Natl Acad Sci U S A. 2019 Apr 23;116(17):8419-8424. doi: 10.1073/pnas.1815727116. Epub 2019 Apr 4.

12.

Multifunctionality debt in global drylands linked to past biome and climate.

Ye JS, Delgado-Baquerizo M, Soliveres S, Maestre FT.

Glob Chang Biol. 2019 Jun;25(6):2152-2161. doi: 10.1111/gcb.14631. Epub 2019 Apr 21.

PMID:
30924573
13.

Plant species-area relationships are determined by evenness, cover and aggregation in drylands worldwide.

DeMalach N, Saiz H, Zaady E, Maestre FT.

Glob Ecol Biogeogr. 2019 Mar;28(3):290-299. doi: 10.1111/geb.12849. Epub 2018 Dec 11.

14.

Changes in belowground biodiversity during ecosystem development.

Delgado-Baquerizo M, Bardgett RD, Vitousek PM, Maestre FT, Williams MA, Eldridge DJ, Lambers H, Neuhauser S, Gallardo A, García-Velázquez L, Sala OE, Abades SR, Alfaro FD, Berhe AA, Bowker MA, Currier CM, Cutler NA, Hart SC, Hayes PE, Hseu ZY, Kirchmair M, Peña-Ramírez VM, Pérez CA, Reed SC, Santos F, Siebe C, Sullivan BW, Weber-Grullon L, Fierer N.

Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):6891-6896. doi: 10.1073/pnas.1818400116. Epub 2019 Mar 15.

15.

Airborne microbial transport limitation to isolated Antarctic soil habitats.

Archer SDJ, Lee KC, Caruso T, Maki T, Lee CK, Cary SC, Cowan DA, Maestre FT, Pointing SB.

Nat Microbiol. 2019 Jun;4(6):925-932. doi: 10.1038/s41564-019-0370-4. Epub 2019 Mar 4.

PMID:
30833723
16.

Australian dryland soils are acidic and nutrient-depleted, and have unique microbial communities compared with other drylands.

Eldridge DJ, Maestre FT, Koen TB, Delgado-Baquerizo M.

J Biogeogr. 2018 Oct 28;45(12):2803-2814. doi: 10.1111/jbi.13456.

17.

Soil microbial respiration adapts to ambient temperature in global drylands.

Dacal M, Bradford MA, Plaza C, Maestre FT, García-Palacios P.

Nat Ecol Evol. 2019 Feb;3(2):232-238. doi: 10.1038/s41559-018-0770-5. Epub 2019 Jan 14.

18.

Intransitivity increases plant functional diversity by limiting dominance in drylands worldwide.

Saiz H, Le Bagousse-Pinguet Y, Gross N, Maestre FT.

J Ecol. 2019 Jan;107(1):240-252. doi: 10.1111/1365-2745.13018. Epub 2018 Jun 14.

19.

Soil moisture dynamics under two rainfall frequency treatments drive early spring CO2 gas exchange of lichen-dominated biocrusts in central Spain.

Baldauf S, Ladrón de Guevara M, Maestre FT, Tietjen B.

PeerJ. 2018 Nov 16;6:e5904. doi: 10.7717/peerj.5904. eCollection 2018.

20.

Simulated climate change affects how biocrusts modulate water gains and desiccation dynamics after rainfall events.

Lafuente A, Berdugo M, de Guevara ML, Gozalo B, Maestre FT.

Ecohydrology. 2018 Sep;11(6). pii: e1935. doi: 10.1002/eco.1935. Epub 2017 Dec 22.

Supplemental Content

Loading ...
Support Center