Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 27

1.

Effect of Water Stress during Grain Filling on Yield, Quality and Physiological Traits of Illpa and Rainbow Quinoa (Chenopodium quinoa Willd.) Cultivars.

Gámez AL, Soba D, Zamarreño ÁM, García-Mina JM, Aranjuelo I, Morales F.

Plants (Basel). 2019 Jun 14;8(6). pii: E173. doi: 10.3390/plants8060173.

2.

Overexpression of thioredoxin m in tobacco chloroplasts inhibits the protein kinase STN7 and alters photosynthetic performance.

Ancín M, Fernández-San Millán A, Larraya L, Morales F, Veramendi J, Aranjuelo I, Farran I.

J Exp Bot. 2019 Feb 5;70(3):1005-1016. doi: 10.1093/jxb/ery415.

3.

Is vegetative area, photosynthesis, or grape C uploading involved in the climate change-related grape sugar/anthocyanin decoupling in Tempranillo?

Salazar-Parra C, Aranjuelo I, Pascual I, Aguirreolea J, Sánchez-Díaz M, Irigoyen JJ, Araus JL, Morales F.

Photosynth Res. 2018 Oct;138(1):115-128. doi: 10.1007/s11120-018-0552-6. Epub 2018 Jul 6.

PMID:
29980966
4.

Tempranillo clones differ in the response of berry sugar and anthocyanin accumulation to elevated temperature.

Arrizabalaga M, Morales F, Oyarzun M, Delrot S, Gomès E, Irigoyen JJ, Hilbert G, Pascual I.

Plant Sci. 2018 Feb;267:74-83. doi: 10.1016/j.plantsci.2017.11.009. Epub 2017 Nov 24.

PMID:
29362101
5.

Grape yield and quality responses to simulated year 2100 expected climatic conditions under different soil textures.

Leibar U, Pascual I, Morales F, Aizpurua A, Unamunzaga O.

J Sci Food Agric. 2017 Jun;97(8):2633-2640. doi: 10.1002/jsfa.8086. Epub 2016 Nov 14.

PMID:
27748529
6.

How will climate change influence grapevine cv. Tempranillo photosynthesis under different soil textures?

Leibar U, Aizpurua A, Unamunzaga O, Pascual I, Morales F.

Photosynth Res. 2015 May;124(2):199-215. doi: 10.1007/s11120-015-0120-2. Epub 2015 Mar 19.

PMID:
25786733
7.

Carbon balance, partitioning and photosynthetic acclimation in fruit-bearing grapevine (Vitis vinifera L. cv. Tempranillo) grown under simulated climate change (elevated CO2, elevated temperature and moderate drought) scenarios in temperature gradient greenhouses.

Salazar-Parra C, Aranjuelo I, Pascual I, Erice G, Sanz-Sáez Á, Aguirreolea J, Sánchez-Díaz M, Irigoyen JJ, Araus JL, Morales F.

J Plant Physiol. 2015 Feb 1;174:97-109. doi: 10.1016/j.jplph.2014.10.009. Epub 2014 Nov 5.

PMID:
25462972
8.

Canopy light heterogeneity drives leaf anatomical, eco-physiological, and photosynthetic changes in olive trees grown in a high-density plantation.

Larbi A, Vázquez S, El-Jendoubi H, Msallem M, Abadía J, Abadía A, Morales F.

Photosynth Res. 2015 Feb;123(2):141-55. doi: 10.1007/s11120-014-0052-2. Epub 2014 Oct 26.

PMID:
25344757
9.

Stomatal and mesophyll conductances to CO₂ in different plant groups: underrated factors for predicting leaf photosynthesis responses to climate change?

Flexas J, Carriquí M, Coopman RE, Gago J, Galmés J, Martorell S, Morales F, Diaz-Espejo A.

Plant Sci. 2014 Sep;226:41-8. doi: 10.1016/j.plantsci.2014.06.011. Epub 2014 Jun 20.

PMID:
25113449
10.

The effects of foliar fertilization with iron sulfate in chlorotic leaves are limited to the treated area. A study with peach trees (Prunus persica L. Batsch) grown in the field and sugar beet (Beta vulgaris L.) grown in hydroponics.

El-Jendoubi H, Vázquez S, Calatayud A, Vavpetič P, Vogel-Mikuš K, Pelicon P, Abadía J, Abadía A, Morales F.

Front Plant Sci. 2014 Jan 20;5:2. doi: 10.3389/fpls.2014.00002. eCollection 2014.

11.
12.

Climate change (elevated CO₂, elevated temperature and moderate drought) triggers the antioxidant enzymes' response of grapevine cv. Tempranillo, avoiding oxidative damage.

Salazar-Parra C, Aguirreolea J, Sánchez-Díaz M, Irigoyen JJ, Morales F.

Physiol Plant. 2012 Feb;144(2):99-110. doi: 10.1111/j.1399-3054.2011.01524.x. Epub 2011 Nov 10.

PMID:
21929631
13.

Growth, yield, and fruit quality of pepper plants amended with two sanitized sewage sludges.

Pascual I, Azcona I, Aguirreolea J, Morales F, Corpas FJ, Palma JM, Rellán-Alvarez R, Sánchez-Díaz M.

J Agric Food Chem. 2010 Jun 9;58(11):6951-9. doi: 10.1021/jf100282f.

PMID:
20450196
14.

Changes in iron and organic acid concentrations in xylem sap and apoplastic fluid of iron-deficient Beta vulgaris plants in response to iron resupply.

Larbi A, Morales F, Abadía A, Abadía J.

J Plant Physiol. 2010 Mar 1;167(4):255-60. doi: 10.1016/j.jplph.2009.09.007. Epub 2009 Oct 24.

PMID:
19854536
15.
16.

Metabolic responses in iron deficient tomato plants.

López-Millán AF, Morales F, Gogorcena Y, Abadía A, Abadía J.

J Plant Physiol. 2009 Mar 1;166(4):375-84. doi: 10.1016/j.jplph.2008.06.011. Epub 2008 Aug 28.

PMID:
18760500
17.

Multicolor fluorescence imaging of leaves--a useful tool for visualizing systemic viral infections in plants.

Pineda M, Gáspár L, Morales F, Szigeti Z, Barón M.

Photochem Photobiol. 2008 Sep-Oct;84(5):1048-60. doi: 10.1111/j.1751-1097.2008.00357.x. Epub 2008 Apr 23.

PMID:
18435702
18.

Photochemistry, remotely sensed physiological reflectance index and de-epoxidation state of the xanthophyll cycle in Quercus coccifera under intense drought.

Peguero-Pina JJ, Morales F, Flexas J, Gil-Pelegrín E, Moya I.

Oecologia. 2008 May;156(1):1-11. doi: 10.1007/s00442-007-0957-y. Epub 2008 Jan 26.

PMID:
18224338
19.
20.

Down co-regulation of light absorption, photochemistry, and carboxylation in Fe-deficient plants growing in different environments.

Larbi A, Abadía A, Abadía J, Morales F.

Photosynth Res. 2006 Sep;89(2-3):113-26. Epub 2006 Sep 13.

PMID:
16969716

Supplemental Content

Loading ...
Support Center