Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 17

1.

Energy Conversion Processes with Perovskite-type Materials.

Ferri D, Pergolesi D, Fabbri E.

Chimia (Aarau). 2019 Nov 1;73(11):913-921. doi: 10.2533/chimia.2019.913.

PMID:
31753072
2.

Design and Synthesis of Ir/Ru Pyrochlore Catalysts for the Oxygen Evolution Reaction Based on Their Bulk Thermodynamic Properties.

Abbott DF, Pittkowski RK, Macounová K, Nebel R, Marelli E, Fabbri E, Castelli IE, Krtil P, Schmidt TJ.

ACS Appl Mater Interfaces. 2019 Oct 16;11(41):37748-37760. doi: 10.1021/acsami.9b13220. Epub 2019 Oct 1.

PMID:
31535842
3.

Co/Fe Oxyhydroxides Supported on Perovskite Oxides as Oxygen Evolution Reaction Catalyst Systems.

Cheng X, Kim BJ, Fabbri E, Schmidt TJ.

ACS Appl Mater Interfaces. 2019 Sep 25;11(38):34787-34795. doi: 10.1021/acsami.9b04456. Epub 2019 Sep 13.

PMID:
31469262
4.

Functional Role of Fe-Doping in Co-Based Perovskite Oxide Catalysts for Oxygen Evolution Reaction.

Kim BJ, Fabbri E, Abbott DF, Cheng X, Clark AH, Nachtegaal M, Borlaf M, Castelli IE, Graule T, Schmidt TJ.

J Am Chem Soc. 2019 Apr 3;141(13):5231-5240. doi: 10.1021/jacs.8b12101. Epub 2019 Mar 21.

PMID:
30860837
5.

Interface Effects on the Ionic Conductivity of Doped Ceria-Yttria-Stabilized Zirconia Heterostructures.

Pergolesi D, Gilardi E, Fabbri E, Roddatis V, Harrington GF, Lippert T, Kilner JA, Traversa E.

ACS Appl Mater Interfaces. 2018 Apr 25;10(16):14160-14169. doi: 10.1021/acsami.8b01903. Epub 2018 Apr 16.

6.

Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting.

Fabbri E, Nachtegaal M, Binninger T, Cheng X, Kim BJ, Durst J, Bozza F, Graule T, Schäublin R, Wiles L, Pertoso M, Danilovic N, Ayers KE, Schmidt TJ.

Nat Mater. 2017 Sep;16(9):925-931. doi: 10.1038/nmat4938. Epub 2017 Jul 17.

PMID:
28714982
7.

Thermodynamic explanation of the universal correlation between oxygen evolution activity and corrosion of oxide catalysts.

Binninger T, Mohamed R, Waltar K, Fabbri E, Levecque P, Kötz R, Schmidt TJ.

Sci Rep. 2015 Jul 16;5:12167. doi: 10.1038/srep12167.

8.

Probing the bulk ionic conductivity by thin film hetero-epitaxial engineering.

Pergolesi D, Roddatis V, Fabbri E, Schneider CW, Lippert T, Traversa E, Kilner JA.

Sci Technol Adv Mater. 2015 Jan 13;16(1):015001. eCollection 2015 Feb.

9.

Advanced cathode materials for polymer electrolyte fuel cells based on pt/ metal oxides: from model electrodes to catalyst systems.

Fabbri E, Pătru A, Rabis A, Kötz R, Schmidt TJ.

Chimia (Aarau). 2014;68(4):217-20. doi: 10.2533/chimia.2014.217.

PMID:
24983601
10.

Tensile lattice distortion does not affect oxygen transport in yttria-stabilized zirconia-CeO2 heterointerfaces.

Pergolesi D, Fabbri E, Cook SN, Roddatis V, Traversa E, Kilner JA.

ACS Nano. 2012 Dec 21;6(12):10524-34. doi: 10.1021/nn302812m. Epub 2012 Nov 16.

11.

Room-temperature giant persistent photoconductivity in SrTiO₃/LaAlO₃ heterostructures.

Tebano A, Fabbri E, Pergolesi D, Balestrino G, Traversa E.

ACS Nano. 2012 Feb 28;6(2):1278-83. doi: 10.1021/nn203991q. Epub 2012 Jan 25.

PMID:
22260261
12.

Towards the next generation of solid oxide fuel cells operating below 600 °c with chemically stable proton-conducting electrolytes.

Fabbri E, Bi L, Pergolesi D, Traversa E.

Adv Mater. 2012 Jan 10;24(2):195-208. doi: 10.1002/adma.201103102. Epub 2011 Sep 27.

PMID:
21953861
13.

Lowering grain boundary resistance of BaZr(0.8)Y(0.2)O(3-δ) with LiNO3 sintering-aid improves proton conductivity for fuel cell operation.

Sun Z, Fabbri E, Bi L, Traversa E.

Phys Chem Chem Phys. 2011 May 7;13(17):7692-700. doi: 10.1039/c0cp01470b. Epub 2010 Nov 23.

PMID:
21103585
14.

Ionic conductivity in oxide heterostructures: the role of interfaces.

Fabbri E, Pergolesi D, Traversa E.

Sci Technol Adv Mater. 2010 Nov 17;11(5):054503. eCollection 2010 Oct. Review.

15.

High proton conduction in grain-boundary-free yttrium-doped barium zirconate films grown by pulsed laser deposition.

Pergolesi D, Fabbri E, D'Epifanio A, Di Bartolomeo E, Tebano A, Sanna S, Licoccia S, Balestrino G, Traversa E.

Nat Mater. 2010 Oct;9(10):846-52. doi: 10.1038/nmat2837. Epub 2010 Sep 19.

PMID:
20852619
16.

Electrode materials: a challenge for the exploitation of protonic solid oxide fuel cells.

Fabbri E, Pergolesi D, Traversa E.

Sci Technol Adv Mater. 2010 Sep 10;11(4):044301. eCollection 2010 Aug. Review.

17.

Materials challenges toward proton-conducting oxide fuel cells: a critical review.

Fabbri E, Pergolesi D, Traversa E.

Chem Soc Rev. 2010 Nov;39(11):4355-69. doi: 10.1039/b902343g. Epub 2010 Sep 6. Review.

PMID:
20818453

Supplemental Content

Loading ...
Support Center