Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 59

1.

Carbon Nanotubes and Related Nanomaterials: Critical Advances and Challenges for Synthesis toward Mainstream Commercial Applications.

Rao R, Pint CL, Islam AE, Weatherup RS, Hofmann S, Meshot ER, Wu F, Zhou C, Dee N, Amama PB, Carpena-Nuñez J, Shi W, Plata DL, Penev ES, Yakobson BI, Balbuena PB, Bichara C, Futaba DN, Noda S, Shin H, Kim KS, Simard B, Mirri F, Pasquali M, Fornasiero F, Kauppinen EI, Arnold M, Cola BA, Nikolaev P, Arepalli S, Cheng HM, Zakharov DN, Stach EA, Zhang J, Wei F, Terrones M, Geohegan DB, Maruyama B, Maruyama S, Li Y, Adams WW, Hart AJ.

ACS Nano. 2018 Dec 26;12(12):11756-11784. doi: 10.1021/acsnano.8b06511. Epub 2018 Dec 5.

PMID:
30516055
2.

A New, General Strategy for Fabricating Highly Concentrated and Viscoplastic Suspensions Based on a Structural Approach To Modulate Interparticle Interaction.

Sakurai S, Kamada F, Kobashi K, Futaba DN, Hata K.

J Am Chem Soc. 2018 Jan 24;140(3):1098-1104. doi: 10.1021/jacs.7b11305. Epub 2018 Jan 8.

PMID:
29272113
3.

Designing Neat and Composite Carbon Nanotube Materials by Porosimetric Characterization.

Kobashi K, Yoon H, Ata S, Yamada T, Futaba DN, Hata K.

Nanoscale Res Lett. 2017 Dec 6;12(1):616. doi: 10.1186/s11671-017-2384-2.

4.

The double-edged effects of annealing MgO underlayers on the efficient synthesis of single-wall carbon nanotube forests.

Tsuji T, Hata K, Futaba DN, Sakurai S.

Nanoscale. 2017 Nov 16;9(44):17617-17622. doi: 10.1039/c7nr06478k.

PMID:
29115340
5.

Unexpected Efficient Synthesis of Millimeter-Scale Single-Wall Carbon Nanotube Forests Using a Sputtered MgO Catalyst Underlayer Enabled by a Simple Treatment Process.

Tsuji T, Hata K, Futaba DN, Sakurai S.

J Am Chem Soc. 2016 Dec 28;138(51):16608-16611. doi: 10.1021/jacs.6b11189. Epub 2016 Dec 19.

PMID:
27977184
6.

A phenomenological model for selective growth of semiconducting single-walled carbon nanotubes based on catalyst deactivation.

Sakurai S, Yamada M, Sakurai H, Sekiguchi A, Futaba DN, Hata K.

Nanoscale. 2016 Jan 14;8(2):1015-23. doi: 10.1039/c5nr05673j.

PMID:
26660858
7.

A sweet spot for highly efficient growth of vertically aligned single-walled carbon nanotube forests enabling their unique structures and properties.

Chen G, Davis RC, Futaba DN, Sakurai S, Kobashi K, Yumura M, Hata K.

Nanoscale. 2016 Jan 7;8(1):162-71. doi: 10.1039/c5nr05537g.

PMID:
26619935
8.

Nano-scale, planar and multi-tiered current pathways from a carbon nanotube-copper composite with high conductivity, ampacity and stability.

Subramaniam C, Sekiguchi A, Yamada T, Futaba DN, Hata K.

Nanoscale. 2016 Feb 21;8(7):3888-94. doi: 10.1039/c5nr03762j.

PMID:
26486752
9.

Robust and Soft Elastomeric Electronics Tolerant to Our Daily Lives.

Sekiguchi A, Tanaka F, Saito T, Kuwahara Y, Sakurai S, Futaba DN, Yamada T, Hata K.

Nano Lett. 2015 Sep 9;15(9):5716-23. doi: 10.1021/acs.nanolett.5b01458. Epub 2015 Aug 11.

PMID:
26218988
10.

The Application of Gas Dwell Time Control for Rapid Single Wall Carbon Nanotube Forest Synthesis to Acetylene Feedstock.

Matsumoto N, Oshima A, Sakurai S, Yamada T, Yumura M, Hata K, Futaba DN.

Nanomaterials (Basel). 2015 Jul 17;5(3):1200-1210. doi: 10.3390/nano5031200.

11.

Scalability of the Heat and Current Treatment on SWCNTs to Improve their Crystallinity and Thermal and Electrical Conductivities.

Matsumoto N, Oshima A, Sakurai S, Yumura M, Hata K, Futaba DN.

Nanoscale Res Lett. 2015 May 16;10:220. doi: 10.1186/s11671-015-0917-0. eCollection 2015.

12.

The relationship between the growth rate and the lifetime in carbon nanotube synthesis.

Chen G, Davis RC, Kimura H, Sakurai S, Yumura M, Futaba DN, Hata K.

Nanoscale. 2015 May 21;7(19):8873-8. doi: 10.1039/c5nr01125f.

PMID:
25913386
13.

Current treatment of bulk single walled carbon nanotubes to heal defects without structural change for increased electrical and thermal conductivities.

Matsumoto N, Oshima A, Yumura M, Futaba DN, Hata K.

Nanoscale. 2015 May 21;7(19):8707-14. doi: 10.1039/c5nr00170f.

PMID:
25913108
14.

Quantitative assessment of the effect of purity on the properties of single wall carbon nanotubes.

Matsumoto N, Chen G, Yumura M, Futaba DN, Hata K.

Nanoscale. 2015 Mar 12;7(12):5126-33. doi: 10.1039/c4nr07618d.

PMID:
25732951
15.

Breakdown of metallic single-wall carbon nanotube paths by NiO nanoparticle point etching for high performance thin film transistors.

Li S, Sakurai S, Futaba DN, Hata K.

Nanoscale. 2015 Jan 28;7(4):1280-4. doi: 10.1039/c4nr06057a.

PMID:
25492495
16.

Influence of matching solubility parameter of polymer matrix and CNT on electrical conductivity of CNT/rubber composite.

Ata S, Mizuno T, Nishizawa A, Subramaniam C, Futaba DN, Hata K.

Sci Rep. 2014 Dec 1;4:7232. doi: 10.1038/srep07232.

17.

Length-dependent plasmon resonance in single-walled carbon nanotubes.

Morimoto T, Joung SK, Saito T, Futaba DN, Hata K, Okazaki T.

ACS Nano. 2014 Oct 28;8(10):9897-904. doi: 10.1021/nn505430s. Epub 2014 Oct 10.

PMID:
25283493
18.

Preferential oxidation-induced etching of zigzag edges in nanographene.

Takashiro J, Kudo Y, Hao SJ, Takai K, Futaba DN, Enoki T, Kiguchi M.

Phys Chem Chem Phys. 2014 Oct 21;16(39):21363-71. doi: 10.1039/c4cp02678k. Epub 2014 Sep 2.

PMID:
25179299
19.

Controlling exfoliation in order to minimize damage during dispersion of long SWCNTs for advanced composites.

Yoon H, Yamashita M, Ata S, Futaba DN, Yamada T, Hata K.

Sci Rep. 2014 Jan 28;4:3907. doi: 10.1038/srep03907.

20.

Diameter control of single-walled carbon nanotube forests from 1.3-3.0 nm by arc plasma deposition.

Chen G, Seki Y, Kimura H, Sakurai S, Yumura M, Hata K, Futaba DN.

Sci Rep. 2014 Jan 22;4:3804. doi: 10.1038/srep03804.

Supplemental Content

Loading ...
Support Center