Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 133

1.

The GMC superfamily of oxidoreductases revisited: analysis and evolution of fungal GMC oxidoreductases.

Sützl L, Foley G, Gillam EMJ, Bodén M, Haltrich D.

Biotechnol Biofuels. 2019 May 10;12:118. doi: 10.1186/s13068-019-1457-0. eCollection 2019.

2.

Versatile Oxidase and Dehydrogenase Activities of Bacterial Pyranose 2-Oxidase Facilitate Redox Cycling with Manganese Peroxidase In Vitro.

Herzog PL, Sützl L, Eisenhut B, Maresch D, Haltrich D, Obinger C, Peterbauer CK.

Appl Environ Microbiol. 2019 Jun 17;85(13). pii: e00390-19. doi: 10.1128/AEM.00390-19. Print 2019 Jul 1.

3.

Constitutive expression and cell-surface display of a bacterial β-mannanase in Lactobacillus plantarum.

Nguyen HM, Pham ML, Stelzer EM, Plattner E, Grabherr R, Mathiesen G, Peterbauer CK, Haltrich D, Nguyen TH.

Microb Cell Fact. 2019 Apr 25;18(1):76. doi: 10.1186/s12934-019-1124-y.

4.

Expression and biochemical characterization of a new alkaline tannase from Lactobacillus pentosus.

Kanpiengjai A, Unban K, Nguyen TH, Haltrich D, Khanongnuch C.

Protein Expr Purif. 2019 May;157:36-41. doi: 10.1016/j.pep.2019.01.005. Epub 2019 Jan 9.

PMID:
30639327
5.

Fermentability of a Novel Galacto-Oligosaccharide Mixture by Lactobacillus spp. and Bifidobacterium spp.

Kittibunchakul S, Maischberger T, Domig KJ, Kneifel W, Nguyen HM, Haltrich D, Nguyen TH.

Molecules. 2018 Dec 18;23(12). pii: E3352. doi: 10.3390/molecules23123352.

6.

Multiplicity of enzymatic functions in the CAZy AA3 family.

Sützl L, Laurent CVFP, Abrera AT, Schütz G, Ludwig R, Haltrich D.

Appl Microbiol Biotechnol. 2018 Mar;102(6):2477-2492. doi: 10.1007/s00253-018-8784-0. Epub 2018 Feb 6. Review.

7.

Evolving stability and pH-dependent activity of the high redox potential Botrytis aclada laccase for enzymatic fuel cells.

Scheiblbrandner S, Breslmayr E, Csarman F, Paukner R, Führer J, Herzog PL, Shleev SV, Osipov EM, Tikhonova TV, Popov VO, Haltrich D, Ludwig R, Kittl R.

Sci Rep. 2017 Oct 20;7(1):13688. doi: 10.1038/s41598-017-13734-0.

8.

Molecular structure of cyclomaltodextrinase derived from amylolytic lactic acid bacterium Enterococcus faecium K-1 and properties of recombinant enzymes expressed in Escherichia coli and Lactobacillus plantarum.

Unban K, Kanpiengjai A, Lumyong S, Nguyen TH, Haltrich D, Khanongnuch C.

Int J Biol Macromol. 2018 Feb;107(Pt A):898-905. doi: 10.1016/j.ijbiomac.2017.09.060. Epub 2017 Sep 19.

PMID:
28935539
9.

Secretory expression of β-mannanase from Bacillus circulans NT 6.7 in Lactobacillus plantarum.

Intaratrakul K, Nitisinprasert S, Nguyen TH, Haltrich D, Keawsompong S.

Protein Expr Purif. 2017 Nov;139:29-35. doi: 10.1016/j.pep.2017.07.005. Epub 2017 Jul 13.

PMID:
28712957
10.

Enhancement of gamma-aminobutyric acid (GABA) levels using an autochthonous Lactobacillus futsaii CS3 as starter culture in Thai fermented shrimp (Kung-Som).

Sanchart C, Rattanaporn O, Haltrich D, Phukpattaranont P, Maneerat S.

World J Microbiol Biotechnol. 2017 Aug;33(8):152. doi: 10.1007/s11274-017-2317-3. Epub 2017 Jul 3.

PMID:
28674926
11.

Lactobacillus futsaii CS3, a New GABA-Producing Strain Isolated from Thai Fermented Shrimp (Kung-Som).

Sanchart C, Rattanaporn O, Haltrich D, Phukpattaranont P, Maneerat S.

Indian J Microbiol. 2017 Jun;57(2):211-217. doi: 10.1007/s12088-016-0632-2. Epub 2016 Nov 22.

12.

Expression and comparative characterization of complete and C-terminally truncated forms of saccharifying α-amylase from Lactobacillus plantarum S21.

Kanpiengjai A, Nguyen TH, Haltrich D, Khanongnuch C.

Int J Biol Macromol. 2017 Oct;103:1294-1301. doi: 10.1016/j.ijbiomac.2017.05.168. Epub 2017 Jun 3.

PMID:
28587961
13.

Immobilization of β-Galactosidases from Lactobacillus on Chitin Using a Chitin-Binding Domain.

Pham ML, Leister T, Nguyen HA, Do BC, Pham AT, Haltrich D, Yamabhai M, Nguyen TH, Nguyen TT.

J Agric Food Chem. 2017 Apr 12;65(14):2965-2976. doi: 10.1021/acs.jafc.6b04982. Epub 2017 Apr 3.

14.

Characterization of three pyranose dehydrogenase isoforms from the litter-decomposing basidiomycete Leucoagaricus meleagris (syn. Agaricus meleagris).

Graf MM, Weber S, Kracher D, Kittl R, Sygmund C, Ludwig R, Peterbauer C, Haltrich D.

Appl Microbiol Biotechnol. 2017 Apr;101(7):2879-2891. doi: 10.1007/s00253-016-8051-1. Epub 2016 Dec 19.

15.

From by-product to valuable components: Efficient enzymatic conversion of lactose in whey using β-galactosidase from Streptococcus thermophilus.

Geiger B, Nguyen HM, Wenig S, Nguyen HA, Lorenz C, Kittl R, Mathiesen G, Eijsink VG, Haltrich D, Nguyen TH.

Biochem Eng J. 2016 Dec 15;116:45-53.

16.
17.

Display of a β-mannanase and a chitosanase on the cell surface of Lactobacillus plantarum towards the development of whole-cell biocatalysts.

Nguyen HM, Mathiesen G, Stelzer EM, Pham ML, Kuczkowska K, Mackenzie A, Agger JW, Eijsink VG, Yamabhai M, Peterbauer CK, Haltrich D, Nguyen TH.

Microb Cell Fact. 2016 Oct 4;15(1):169.

18.

OmpA signal peptide leads to heterogenous secretion of B. subtilis chitosanase enzyme from E. coli expression system.

Pechsrichuang P, Songsiriritthigul C, Haltrich D, Roytrakul S, Namvijtr P, Bonaparte N, Yamabhai M.

Springerplus. 2016 Jul 28;5(1):1200. doi: 10.1186/s40064-016-2893-y. eCollection 2016.

19.

Secretory production of a beta-mannanase and a chitosanase using a Lactobacillus plantarum expression system.

Sak-Ubol S, Namvijitr P, Pechsrichuang P, Haltrich D, Nguyen TH, Mathiesen G, Eijsink VG, Yamabhai M.

Microb Cell Fact. 2016 May 12;15:81. doi: 10.1186/s12934-016-0481-z.

20.

Extracellular electron transfer systems fuel cellulose oxidative degradation.

Kracher D, Scheiblbrandner S, Felice AK, Breslmayr E, Preims M, Ludwicka K, Haltrich D, Eijsink VG, Ludwig R.

Science. 2016 May 27;352(6289):1098-101. doi: 10.1126/science.aaf3165. Epub 2016 Apr 28.

Supplemental Content

Loading ...
Support Center