Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 23

1.

MolFind2: A Protocol for Acquiring and Integrating MS3 Data to Improve In Silico Chemical Structure Elucidation for Metabolomics.

Samaraweera MA, Hill DW, Grant DF.

Methods Mol Biol. 2020;2084:283-295. doi: 10.1007/978-1-0716-0030-6_18.

PMID:
31729668
2.

Evaluation of an Artificial Neural Network Retention Index Model for Chemical Structure Identification in Nontargeted Metabolomics.

Samaraweera MA, Hall LM, Hill DW, Grant DF.

Anal Chem. 2018 Nov 6;90(21):12752-12760. doi: 10.1021/acs.analchem.8b03118. Epub 2018 Oct 24.

PMID:
30350614
3.

Development of a Reverse Phase HPLC Retention Index Model for Nontargeted Metabolomics Using Synthetic Compounds.

Hall LM, Hill DW, Bugden K, Cawley S, Hall LH, Chen MH, Grant DF.

J Chem Inf Model. 2018 Mar 26;58(3):591-604. doi: 10.1021/acs.jcim.7b00496. Epub 2018 Mar 6.

PMID:
29489351
4.

Development of Database Assisted Structure Identification (DASI) Methods for Nontargeted Metabolomics.

Menikarachchi LC, Dubey R, Hill DW, Brush DN, Grant DF.

Metabolites. 2016 May 31;6(2). pii: E17. doi: 10.3390/metabo6020017.

5.

Optimizing artificial neural network models for metabolomics and systems biology: an example using HPLC retention index data.

Hall LM, Hill DW, Menikarachchi LC, Chen MH, Hall LH, Grant DF.

Bioanalysis. 2015;7(8):939-55. doi: 10.4155/bio.15.1.

7.

Development of a two-step indirect method for modeling Ecom50.

Hall LH, Hall LM, Hill DW, Hawkins DM, Chen MH, Grant DF.

Curr Comput Aided Drug Des. 2014;10(4):374-82.

PMID:
25549758
8.

Development of HPLC Retention Index QSAR Models for Nontargeted Metabolomics.

Hall LM, Hill DW, Hall LH, Kormos TM, Grant DF.

Adv Chromatogr. 2014;51:241-79. No abstract available.

PMID:
26462375
9.

In silico enzymatic synthesis of a 400,000 compound biochemical database for nontargeted metabolomics.

Menikarachchi LC, Hill DW, Hamdalla MA, Mandoiu II, Grant DF.

J Chem Inf Model. 2013 Sep 23;53(9):2483-92. doi: 10.1021/ci400368v. Epub 2013 Sep 12.

10.

BioSM: metabolomics tool for identifying endogenous mammalian biochemical structures in chemical structure space.

Hamdalla MA, Mandoiu II, Hill DW, Rajasekaran S, Grant DF.

J Chem Inf Model. 2013 Mar 25;53(3):601-12. doi: 10.1021/ci300512q. Epub 2013 Feb 27.

11.

Chemical structure identification in metabolomics: computational modeling of experimental features.

Menikarachchi LC, Hamdalla MA, Hill DW, Grant DF.

Comput Struct Biotechnol J. 2013 Mar 1;5:e201302005. doi: 10.5936/csbj.201302005. eCollection 2013. Review.

12.

MolFind: a software package enabling HPLC/MS-based identification of unknown chemical structures.

Menikarachchi LC, Cawley S, Hill DW, Hall LM, Hall L, Lai S, Wilder J, Grant DF.

Anal Chem. 2012 Nov 6;84(21):9388-94. doi: 10.1021/ac302048x. Epub 2012 Oct 23.

13.

Correlation of Ecom50 values between mass spectrometers: effect of collision cell radiofrequency voltage on calculated survival yield.

Hill DW, Baveghems CL, Albaugh DR, Kormos TM, Lai S, Ng HK, Grant DF.

Rapid Commun Mass Spectrom. 2012 Oct 15;26(19):2303-10. doi: 10.1002/rcm.6353.

14.

Development of Ecom₅₀ and retention index models for nontargeted metabolomics: identification of 1,3-dicyclohexylurea in human serum by HPLC/mass spectrometry.

Hall LM, Hall LH, Kertesz TM, Hill DW, Sharp TR, Oblak EZ, Dong YW, Wishart DS, Chen MH, Grant DF.

J Chem Inf Model. 2012 May 25;52(5):1222-37. doi: 10.1021/ci300092s. Epub 2012 Apr 27.

15.

Database searching for structural identification of metabolites in complex biofluids for mass spectrometry-based metabonomics.

Kertesz TM, Hill DW, Albaugh DR, Hall LH, Hall LM, Grant DF.

Bioanalysis. 2009 Dec;1(9):1627-43. doi: 10.4155/bio.09.145. Review.

PMID:
21083108
16.

CE50: quantifying collision induced dissociation energy for small molecule characterization and identification.

Kertesz TM, Hall LH, Hill DW, Grant DF.

J Am Soc Mass Spectrom. 2009 Sep;20(9):1759-67. doi: 10.1016/j.jasms.2009.06.002. Epub 2009 Jun 21.

17.

Prediction of HPLC retention index using artificial neural networks and IGroup E-state indices.

Albaugh DR, Hall LM, Hill DW, Kertesz TM, Parham M, Hall LH, Grant DF.

J Chem Inf Model. 2009 Apr;49(4):788-99. doi: 10.1021/ci9000162.

PMID:
19309176
18.

Mass spectral metabonomics beyond elemental formula: chemical database querying by matching experimental with computational fragmentation spectra.

Hill DW, Kertesz TM, Fontaine D, Friedman R, Grant DF.

Anal Chem. 2008 Jul 15;80(14):5574-82. doi: 10.1021/ac800548g. Epub 2008 Jun 12.

PMID:
18547062
19.

A semiparametric modeling framework for potential biomarker discovery and the development of metabonomic profiles.

Ghosh S, Grant DF, Dey DK, Hill DW.

BMC Bioinformatics. 2008 Jan 23;9:38. doi: 10.1186/1471-2105-9-38.

20.

Supplemental Content

Loading ...
Support Center