Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 13

1.

Band Structure Engineering of Schiff-Base Microporous Organic Polymers for Enhanced Visible-Light Photocatalytic Performance.

Xiao Z, Huang X, Zhao K, Song Q, Guo R, Zhang X, Zhou S, Kong D, Wagner M, Müllen K, Zhi L.

Small. 2019 Aug;15(34):e1900244. doi: 10.1002/smll.201900244. Epub 2019 Jul 1.

PMID:
31259465
2.

Direct Writing Supercapacitors Using a Carbon Nanotube/Ag Nanoparticle-Based Ink on Cellulose Acetate Membrane Paper.

Guan X, Cao L, Huang Q, Kong D, Zhang P, Lin H, Li W, Lin Z, Yuan H.

Polymers (Basel). 2019 Jun 3;11(6). pii: E973. doi: 10.3390/polym11060973.

3.

In Situ Growth of a High-Performance All-Solid-State Electrode for Flexible Supercapacitors Based on a PANI/CNT/EVA Composite.

Guan X, Kong D, Huang Q, Cao L, Zhang P, Lin H, Lin Z, Yuan H.

Polymers (Basel). 2019 Jan 21;11(1). pii: E178. doi: 10.3390/polym11010178.

4.

Electrode Design from "Internal" to "External" for High Stability Silicon Anodes in Lithium-Ion Batteries.

Qi S, Zhang X, Lv W, Zhang Y, Kong D, Huang Z, Yang QH.

ACS Appl Mater Interfaces. 2019 Apr 17;11(15):14142-14149. doi: 10.1021/acsami.9b02206. Epub 2019 Apr 4.

PMID:
30907576
5.

Rational Design of Carbon-Rich Materials for Energy Storage and Conversion.

Kong D, Gao Y, Xiao Z, Xu X, Li X, Zhi L.

Adv Mater. 2018 Oct 26:e1804973. doi: 10.1002/adma.201804973. [Epub ahead of print] Review.

PMID:
30365195
6.

A facile and processable integration strategy towards Schiff-base polymer-derived carbonaceous materials with high lithium storage performance.

Xiao Z, Han J, Xiao J, Song Q, Zhang X, Kong D, Yang QH, Zhi L.

Nanoscale. 2018 Jun 14;10(22):10351-10356. doi: 10.1039/c8nr03256d. Epub 2018 May 24.

PMID:
29796460
7.

Nitrogen-Enriched Carbon/CNT Composites Based on Schiff-Base Networks: Ultrahigh N Content and Enhanced Lithium Storage Properties.

Xiao Z, Song Q, Guo R, Kong D, Zhou S, Huang X, Iqbal R, Zhi L.

Small. 2018 Mar;14(12):e1703569. doi: 10.1002/smll.201703569. Epub 2018 Feb 19.

PMID:
29457354
8.

Caging tin oxide in three-dimensional graphene networks for superior volumetric lithium storage.

Han J, Kong D, Lv W, Tang DM, Han D, Zhang C, Liu D, Xiao Z, Zhang X, Xiao J, He X, Hsia FC, Zhang C, Tao Y, Golberg D, Kang F, Zhi L, Yang QH.

Nat Commun. 2018 Jan 26;9(1):402. doi: 10.1038/s41467-017-02808-2.

9.

Bending-Tolerant Anodes for Lithium-Metal Batteries.

Wang A, Tang S, Kong D, Liu S, Chiou K, Zhi L, Huang J, Xia YY, Luo J.

Adv Mater. 2018 Jan;30(1). doi: 10.1002/adma.201703891. Epub 2017 Nov 10.

PMID:
29125657
10.

Silicene Flowers: A Dual Stabilized Silicon Building Block for High-Performance Lithium Battery Anodes.

Zhang X, Qiu X, Kong D, Zhou L, Li Z, Li X, Zhi L.

ACS Nano. 2017 Jul 25;11(7):7476-7484. doi: 10.1021/acsnano.7b03942. Epub 2017 Jul 11.

PMID:
28692250
11.

Disassembly-Reassembly Approach to RuO2 /Graphene Composites for Ultrahigh Volumetric Capacitance Supercapacitor.

Ma H, Kong D, Xu Y, Xie X, Tao Y, Xiao Z, Lv W, Jang HD, Huang J, Yang QH.

Small. 2017 Aug;13(30). doi: 10.1002/smll.201701026. Epub 2017 Jun 26.

PMID:
28650519
12.

All-biomaterial supercapacitor derived from bacterial cellulose.

Wang X, Kong D, Zhang Y, Wang B, Li X, Qiu T, Song Q, Ning J, Song Y, Zhi L.

Nanoscale. 2016 Apr 28;8(17):9146-50. doi: 10.1039/c6nr01485b.

PMID:
27093428
13.

Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors.

Tao Y, Xie X, Lv W, Tang DM, Kong D, Huang Z, Nishihara H, Ishii T, Li B, Golberg D, Kang F, Kyotani T, Yang QH.

Sci Rep. 2013 Oct 17;3:2975. doi: 10.1038/srep02975.

Supplemental Content

Loading ...
Support Center