Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 24


Expression of a dominant-negative AtNEET-H89C protein disrupts iron-sulfur metabolism and iron homeostasis in Arabidopsis.

Zandalinas SI, Song L, Sengupta S, McInturf SA, Grant DG, Marjault HB, Castro-Guerrero NA, Burks D, Azad RK, Mendoza-Cozatl DG, Nechushtai R, Mittler R.

Plant J. 2020 Mar;101(5):1152-1169. doi: 10.1111/tpj.14581. Epub 2019 Dec 9.


Keep talking: crosstalk between iron and sulfur networks fine-tunes growth and development to promote survival under iron limitation.

Mendoza-Cózatl DG, Gokul A, Carelse MF, Jobe TO, Long TA, Keyster M.

J Exp Bot. 2019 Aug 19;70(16):4197-4210. doi: 10.1093/jxb/erz290.


Phosphate Deficiency Negatively Affects Early Steps of the Symbiosis between Common Bean and Rhizobia.

Isidra-Arellano MC, Reyero-Saavedra MDR, Sánchez-Correa MDS, Pingault L, Sen S, Joshi T, Girard L, Castro-Guerrero NA, Mendoza-Cozatl DG, Libault M, Valdés-López O.

Genes (Basel). 2018 Oct 15;9(10). pii: E498. doi: 10.3390/genes9100498.


Copper uptake mechanism of Arabidopsis thaliana high-affinity COPT transporters.

Sanz A, Pike S, Khan MA, Carrió-Seguí À, Mendoza-Cózatl DG, Peñarrubia L, Gassmann W.

Protoplasma. 2019 Jan;256(1):161-170. doi: 10.1007/s00709-018-1286-1. Epub 2018 Jul 24.


Changes in iron availability in Arabidopsis are rapidly sensed in the leaf vasculature and impaired sensing leads to opposite transcriptional programs in leaves and roots.

Khan MA, Castro-Guerrero NA, McInturf SA, Nguyen NT, Dame AN, Wang J, Bindbeutel RK, Joshi T, Jurisson SS, Nusinow DA, Mendoza-Cozatl DG.

Plant Cell Environ. 2018 Oct;41(10):2263-2276. doi: 10.1111/pce.13192. Epub 2018 Jun 19.


Quantitative proteomics analysis of leaves from two Sedum alfredii (Crassulaceae) populations that differ in cadmium accumulation.

Zhang Z, Zhou H, Yu Q, Li Y, Mendoza-Cózatl DG, Qiu B, Liu P, Chen Q.

Proteomics. 2017 May;17(10):e1600456. doi: 10.1002/pmic.201600456.


Enhanced cadmium efflux and root-to-shoot translocation are conserved in the hyperaccumulator Sedum alfredii (Crassulaceae family).

Zhang Z, Yu Q, Du H, Ai W, Yao X, Mendoza-Cózatl DG, Qiu B.

FEBS Lett. 2016 Jun;590(12):1757-64. doi: 10.1002/1873-3468.12225. Epub 2016 Jun 11.


Common Bean: A Legume Model on the Rise for Unraveling Responses and Adaptations to Iron, Zinc, and Phosphate Deficiencies.

Castro-Guerrero NA, Isidra-Arellano MC, Mendoza-Cozatl DG, Valdés-López O.

Front Plant Sci. 2016 May 3;7:600. doi: 10.3389/fpls.2016.00600. eCollection 2016. Review.


Purification of Translating Ribosomes and Associated mRNAs from Soybean (Glycine max).

Castro-Guerrero NA, Cui Y, Mendoza-Cozatl DG.

Curr Protoc Plant Biol. 2016 May;1(1):185-196. doi: 10.1002/cppb.20011.


Identification of AtOPT4 as a Plant Glutathione Transporter.

Zhang Z, Xie Q, Jobe TO, Kau AR, Wang C, Li Y, Qiu B, Wang Q, Mendoza-Cózatl DG, Schroeder JI.

Mol Plant. 2016 Mar 7;9(3):481-484. doi: 10.1016/j.molp.2015.07.013. Epub 2015 Aug 15. No abstract available.


OPT3 is a component of the iron-signaling network between leaves and roots and misregulation of OPT3 leads to an over-accumulation of cadmium in seeds.

Mendoza-Cózatl DG, Xie Q, Akmakjian GZ, Jobe TO, Patel A, Stacey MG, Song L, Demoin DW, Jurisson SS, Stacey G, Schroeder JI.

Mol Plant. 2014 Sep;7(9):1455-1469. doi: 10.1093/mp/ssu067. Epub 2014 May 31.


Moving toward a precise nutrition: preferential loading of seeds with essential nutrients over non-essential toxic elements.

Khan MA, Castro-Guerrero N, Mendoza-Cozatl DG.

Front Plant Sci. 2014 Feb 20;5:51. doi: 10.3389/fpls.2014.00051. eCollection 2014. Review.


Zn-bis-glutathionate is the best co-substrate of the monomeric phytochelatin synthase from the photosynthetic heavy metal-hyperaccumulator Euglena gracilis.

García-García JD, Girard L, Hernández G, Saavedra E, Pardo JP, Rodríguez-Zavala JS, Encalada R, Reyes-Prieto A, Mendoza-Cózatl DG, Moreno-Sánchez R.

Metallomics. 2014 Mar;6(3):604-16. doi: 10.1039/c3mt00313b. Epub 2014 Jan 24.


Phytochelatin-metal(loid) transport into vacuoles shows different substrate preferences in barley and Arabidopsis.

Song WY, Mendoza-Cózatl DG, Lee Y, Schroeder JI, Ahn SN, Lee HS, Wicker T, Martinoia E.

Plant Cell Environ. 2014 May;37(5):1192-201. doi: 10.1111/pce.12227. Epub 2013 Dec 8.


Feedback inhibition by thiols outranks glutathione depletion: a luciferase-based screen reveals glutathione-deficient γ-ECS and glutathione synthetase mutants impaired in cadmium-induced sulfate assimilation.

Jobe TO, Sung DY, Akmakjian G, Pham A, Komives EA, Mendoza-Cózatl DG, Schroeder JI.

Plant J. 2012 Jun;70(5):783-95. doi: 10.1111/j.1365-313X.2012.04924.x. Epub 2012 Mar 31.


Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic.

Mendoza-Cózatl DG, Jobe TO, Hauser F, Schroeder JI.

Curr Opin Plant Biol. 2011 Oct;14(5):554-62. doi: 10.1016/j.pbi.2011.07.004. Epub 2011 Aug 5. Review.


Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters.

Song WY, Park J, Mendoza-Cózatl DG, Suter-Grotemeyer M, Shim D, Hörtensteiner S, Geisler M, Weder B, Rea PA, Rentsch D, Schroeder JI, Lee Y, Martinoia E.

Proc Natl Acad Sci U S A. 2010 Dec 7;107(49):21187-92. doi: 10.1073/pnas.1013964107. Epub 2010 Nov 15.


Tonoplast-localized Abc2 transporter mediates phytochelatin accumulation in vacuoles and confers cadmium tolerance.

Mendoza-Cózatl DG, Zhai Z, Jobe TO, Akmakjian GZ, Song WY, Limbo O, Russell MR, Kozlovskyy VI, Martinoia E, Vatamaniuk OK, Russell P, Schroeder JI.

J Biol Chem. 2010 Dec 24;285(52):40416-26. doi: 10.1074/jbc.M110.155408. Epub 2010 Oct 11.


ARS5 is a component of the 26S proteasome complex, and negatively regulates thiol biosynthesis and arsenic tolerance in Arabidopsis.

Sung DY, Kim TH, Komives EA, Mendoza-Cózatl DG, Schroeder JI.

Plant J. 2009 Sep;59(5):802-13. doi: 10.1111/j.1365-313X.2009.03914.x. Epub 2009 May 12.

Supplemental Content

Loading ...
Support Center