Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 25

1.

Nested capillary anti-resonant silica fiber with mid-infrared transmission and low bending sensitivity at 4000  nm.

Klimczak M, Dobrakowski D, Ghosh AN, Stępniewski G, Pysz D, Huss G, Sylvestre T, Buczyński R.

Opt Lett. 2019 Sep 1;44(17):4395-4398. doi: 10.1364/OL.44.004395.

PMID:
31465410
2.

Laser absorption spectroscopy at 2 µm inside revolver-type anti-resonant hollow core fiber.

Nikodem M, Gomółka G, Klimczak M, Pysz D, Buczyński R.

Opt Express. 2019 May 13;27(10):14998-15006. doi: 10.1364/OE.27.014998.

PMID:
31163939
3.

Inscription of Bragg gratings in nanostructured graded index single-mode fibers.

Osuch T, Anuszkiewicz A, Markowski K, Filipkowski A, Pysz D, Kasztelanic R, Stepien R, Klimczak M, Buczynski R.

Opt Express. 2019 May 13;27(10):13721-13733. doi: 10.1364/OE.27.013721.

PMID:
31163831
4.

Optical fibers with open side channel by wet etching.

Kasztelanic R, Filipkowski A, Pysz D, Buczynski R.

Opt Express. 2018 Dec 10;26(25):32374-32387. doi: 10.1364/OE.26.032374.

PMID:
30645406
5.

Development of Dispersion-Optimized Photonic Crystal Fibers Based on Heavy Metal Oxide Glasses for Broadband Infrared Supercontinuum Generation with Fiber Lasers.

Stępniewski G, Pniewski J, Pysz D, Cimek J, Stępień R, Klimczak M, Buczyński R.

Sensors (Basel). 2018 Nov 25;18(12). pii: E4127. doi: 10.3390/s18124127.

6.

Fused silica photonic crystal fiber with heavily germanium doped microinclusion in the core dedicated to couple, guide and control LP02 higher-order mode.

Stefaniuk T, Stępniewski G, Pysz D, Stępień R, Buczyński R.

Opt Express. 2018 Aug 20;26(17):21939-21949. doi: 10.1364/OE.26.021939.

PMID:
30130895
7.

Fused silica optical fibers with graded index nanostructured core.

Anuszkiewicz A, Kasztelanic R, Filipkowski A, Stepniewski G, Stefaniuk T, Siwicki B, Pysz D, Klimczak M, Buczynski R.

Sci Rep. 2018 Aug 17;8(1):12329. doi: 10.1038/s41598-018-30284-1.

8.

Integrating Free-Form Nanostructured GRIN Microlenses with Single-Mode Fibers for Optofluidic Systems.

Kasztelanic R, Filipkowski A, Anuszkiewicz A, Stafiej P, Stepniewski G, Pysz D, Krzyzak K, Stepien R, Klimczak M, Buczynski R.

Sci Rep. 2018 Mar 22;8(1):5072. doi: 10.1038/s41598-018-23464-6.

9.

High resolution Shack-Hartmann sensor based on array of nanostructured GRIN lenses.

Kasztelanic R, Filipkowski A, Pysz D, Stepien R, Waddie AJ, Taghizadeh MR, Buczynski R.

Opt Express. 2017 Feb 6;25(3):1680-1691. doi: 10.1364/OE.25.001680.

PMID:
29519022
10.

Formation of optical vortices with all-glass nanostructured gradient index masks.

Switkowski K, Anuszkiewicz A, Filipkowski A, Pysz D, Stepien R, Krolikowski W, Buczynski R.

Opt Express. 2017 Dec 11;25(25):31443-31450. doi: 10.1364/OE.25.031443.

PMID:
29245819
11.

Coherent supercontinuum bandwidth limitations under femtosecond pumping at 2 µm in all-solid soft glass photonic crystal fibers.

Klimczak M, Siwicki B, Zhou B, Bache M, Pysz D, Bang O, Buczyński R.

Opt Express. 2016 Dec 26;24(26):29406-29416. doi: 10.1364/OE.24.029406.

PMID:
28059327
12.

Diffractive optics development using a modified stack-and-draw technique.

Pniewski J, Kasztelanic R, Nowosielski JM, Filipkowski A, Piechal B, Waddie AJ, Pysz D, Kujawa I, Stepien R, Taghizadeh MR, Buczynski R.

Appl Opt. 2016 Jun 20;55(18):4939-45. doi: 10.1364/AO.55.004939.

PMID:
27409122
13.

Large elliptical nanostructured gradient-index microlens.

Buczynski R, Filipkowski A, Waddie AJ, Piechal B, Nowosielski J, Pysz D, Stepien R, Taghizadeh MR.

Appl Opt. 2016 Jan 1;55(1):89-94. doi: 10.1364/AO.55.000089.

PMID:
26835626
14.

Nanostructured gradient index microaxicons made by a modified stack and draw method.

Filipkowski A, Piechal B, Pysz D, Stepien R, Waddie A, Taghizadeh MR, Buczynski R.

Opt Lett. 2015 Nov 15;40(22):5200-3. doi: 10.1364/OL.40.005200.

PMID:
26565834
15.

Optical fibers with gradient index nanostructured core.

Buczyński R, Klimczak M, Stefaniuk T, Kasztelanic R, Siwicki B, Stępniewski G, Cimek J, Pysz D, Stępień R.

Opt Express. 2015 Oct 5;23(20):25588-96. doi: 10.1364/OE.23.025588.

PMID:
26480075
16.

Ultrafast multi-wavelength switch based on dynamics of spectrally-shifted solitons in a dual‑core photonic crystal fiber.

Stajanca P, Pysz D, Andriukaitis G, Balciunas T, Fan G, Baltuska A, Bugar I.

Opt Express. 2014 Dec 15;22(25):31092-101. doi: 10.1364/OE.22.031092.

PMID:
25607058
17.

Coherent supercontinuum generation up to 2.3 µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion.

Klimczak M, Siwicki B, Skibiński P, Pysz D, Stępień R, Heidt A, Radzewicz C, Buczyński R.

Opt Express. 2014 Jul 28;22(15):18824-32. doi: 10.1364/OE.22.018824.

PMID:
25089500
18.

All-solid microstructured fiber with flat normal chromatic dispersion.

Martynkien T, Pysz D, Stępień R, Buczyński R.

Opt Lett. 2014 Apr 15;39(8):2342-5. doi: 10.1364/OL.39.002342.

PMID:
24978988
19.

Broadband infrared supercontinuum generation in hexagonal-lattice tellurite photonic crystal fiber with dispersion optimized for pumping near 1560  nm: reply.

Klimczak M, Stepniewski G, Bookey H, Szolno A, Stepien R, Pysz D, Kar A, Waddie A, Taghizadeh MR, Buczynski R.

Opt Lett. 2014 Apr 15;39(8):2241. doi: 10.1364/OL.39.002241.

PMID:
24978962
20.

Ytterbium-Phosphate Glass for Microstructured Fiber Laser.

Stępień R, Franczyk M, Pysz D, Kujawa I, Klimczak M, Buczyński R.

Materials (Basel). 2014 Jun 19;7(6):4723-4738. doi: 10.3390/ma7064723.

Supplemental Content

Loading ...
Support Center