Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 15

1.

Spatial Variability of Aroma Profiles of Cocoa Trees Obtained through Computer Vision and Machine Learning Modelling: A Cover Photography and High Spatial Remote Sensing Application.

Fuentes S, Chacon G, Torrico DD, Zarate A, Gonzalez Viejo C.

Sensors (Basel). 2019 Jul 11;19(14). pii: E3054. doi: 10.3390/s19143054.

2.

Non-Invasive Tools to Detect Smoke Contamination in Grapevine Canopies, Berries and Wine: A Remote Sensing and Machine Learning Modeling Approach.

Fuentes S, Tongson EJ, De Bei R, Gonzalez Viejo C, Ristic R, Tyerman S, Wilkinson K.

Sensors (Basel). 2019 Jul 30;19(15). pii: E3335. doi: 10.3390/s19153335.

3.

D-Tagatose as a Sucrose Substitute and Its Effect on the Physico-Chemical Properties and Acceptability of Strawberry-Flavored Yogurt.

Torrico DD, Tam J, Fuentes S, Gonzalez Viejo C, Dunshea FR.

Foods. 2019 Jul 12;8(7). pii: E256. doi: 10.3390/foods8070256.

4.

Consumer Acceptability, Eye Fixation, and Physiological Responses: A Study of Novel and Familiar Chocolate Packaging Designs Using Eye-Tracking Devices.

Gunaratne NM, Fuentes S, Gunaratne TM, Torrico DD, Ashman H, Francis C, Gonzalez Viejo C, Dunshea FR.

Foods. 2019 Jul 12;8(7). pii: E253. doi: 10.3390/foods8070253.

5.

Physiological Responses to Basic Tastes for Sensory Evaluation of Chocolate Using Biometric Techniques.

Gunaratne TM, Fuentes S, Gunaratne NM, Torrico DD, Gonzalez Viejo C, Dunshea FR.

Foods. 2019 Jul 5;8(7). pii: E243. doi: 10.3390/foods8070243.

6.

Effects of packaging design on sensory liking and willingness to purchase: A study using novel chocolate packaging.

Gunaratne NM, Fuentes S, Gunaratne TM, Torrico DD, Francis C, Ashman H, Gonzalez Viejo C, Dunshea FR.

Heliyon. 2019 Jun 6;5(6):e01696. doi: 10.1016/j.heliyon.2019.e01696. eCollection 2019 Jun.

7.

Chemical characterization of aromas in beer and their effect on consumers liking.

Gonzalez Viejo C, Fuentes S, Torrico DD, Godbole A, Dunshea FR.

Food Chem. 2019 Sep 30;293:479-485. doi: 10.1016/j.foodchem.2019.04.114. Epub 2019 Apr 29.

PMID:
31151637
8.

Development of emotion lexicons to describe chocolate using the Check-All-That-Apply (CATA) methodology across Asian and Western groups.

Gunaratne TM, Gonzalez Viejo C, Fuentes S, Torrico DD, Gunaratne NM, Ashman H, Dunshea FR.

Food Res Int. 2019 Jan;115:526-534. doi: 10.1016/j.foodres.2018.10.001. Epub 2018 Oct 2. Review.

PMID:
30599974
9.

Cross-cultural effects of food product familiarity on sensory acceptability and non-invasive physiological responses of consumers.

Torrico DD, Fuentes S, Gonzalez Viejo C, Ashman H, Dunshea FR.

Food Res Int. 2019 Jan;115:439-450. doi: 10.1016/j.foodres.2018.10.054. Epub 2018 Oct 22. Review.

PMID:
30599962
10.

Development of a Biosensory Computer Application to Assess Physiological and Emotional Responses from Sensory Panelists.

Fuentes S, Gonzalez Viejo C, Torrico DD, Dunshea FR.

Sensors (Basel). 2018 Sep 5;18(9). pii: E2958. doi: 10.3390/s18092958.

11.

Non-Contact Heart Rate and Blood Pressure Estimations from Video Analysis and Machine Learning Modelling Applied to Food Sensory Responses: A Case Study for Chocolate.

Gonzalez Viejo C, Fuentes S, Torrico DD, Dunshea FR.

Sensors (Basel). 2018 Jun 3;18(6). pii: E1802. doi: 10.3390/s18061802.

12.

Assessment of Beer Quality Based on a Robotic Pourer, Computer Vision, and Machine Learning Algorithms Using Commercial Beers.

Gonzalez Viejo C, Fuentes S, Torrico DD, Howell K, Dunshea FR.

J Food Sci. 2018 May;83(5):1381-1388. doi: 10.1111/1750-3841.14114. Epub 2018 Mar 30.

PMID:
29603223
13.

Integration of non-invasive biometrics with sensory analysis techniques to assess acceptability of beer by consumers.

Gonzalez Viejo C, Fuentes S, Howell K, Torrico DD, Dunshea FR.

Physiol Behav. 2019 Mar 1;200:139-147. doi: 10.1016/j.physbeh.2018.02.051. Epub 2018 Mar 5.

PMID:
29501558
14.

Assessment of beer quality based on foamability and chemical composition using computer vision algorithms, near infrared spectroscopy and machine learning algorithms.

Gonzalez Viejo C, Fuentes S, Torrico D, Howell K, Dunshea FR.

J Sci Food Agric. 2018 Jan;98(2):618-627. doi: 10.1002/jsfa.8506. Epub 2017 Aug 8.

PMID:
28664995
15.

Development of a robotic pourer constructed with ubiquitous materials, open hardware and sensors to assess beer foam quality using computer vision and pattern recognition algorithms: RoboBEER.

Gonzalez Viejo C, Fuentes S, Li G, Collmann R, Condé B, Torrico D.

Food Res Int. 2016 Nov;89(Pt 1):504-513. doi: 10.1016/j.foodres.2016.08.045. Epub 2016 Sep 1.

PMID:
28460945

Supplemental Content

Loading ...
Support Center