Format

Send to

Choose Destination
Sensors (Basel). 2019 Feb 21;19(4). pii: E912. doi: 10.3390/s19040912.

Uplink Non-Orthogonal Multiple Access with Channel Estimation Errors for Internet of Things Applications.

Author information

1
Dept. of Information and Communication Engineering, Dongguk University, Seoul 04602, Korea. minjoong@dongguk.edu.
2
School of Electrical Engineering, Korea University, Seoul 02841, Korea. ccgkang@korea.ac.kr.

Abstract

One of the key requirements for next generation wireless or cellular communication systems is to efficiently support a large number of connections for Internet of Things (IoT) applications, and uplink non-orthogonal multiple access (NOMA) schemes can be used for this purpose. In uplink NOMA systems, pilot symbols, as well as data symbols can be superimposed onto shared resources. The error rate performance can be severely degraded due to channel estimation errors, especially when the number of superimposed packets is large. In this paper, we discuss uplink NOMA schemes with channel estimation errors, assuming that quadrature phase shift keying (QPSK) modulation is used. When pilot signals are superimposed onto the shared resources and a large number of devices perform random accesses concurrently to a single resource of the base station, the channels might not be accurately estimated even in high SNR environments. In this paper, we propose an uplink NOMA scheme, which can alleviate the performance degradation due to channel estimation errors.

KEYWORDS:

IoT; NOMA; QPSK; channel estimation; massive IoT; random access

Supplemental Content

Full text links

Icon for Multidisciplinary Digital Publishing Institute (MDPI) Icon for PubMed Central
Loading ...
Support Center