Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 28

1.

Effect of electron correlation in the decomposition of core level binding energy shifts into initial and final state contributions.

Figueras M, Sousa C, Illas F.

Phys Chem Chem Phys. 2019 May 8;21(18):9399-9406. doi: 10.1039/c9cp01569h.

PMID:
30997468
2.

Deactivation of Excited States in Transition-Metal Complexes: Insight from Computational Chemistry.

Sousa C, Alías M, Domingo A, de Graaf C.

Chemistry. 2019 Jan 24;25(5):1152-1164. doi: 10.1002/chem.201801990. Epub 2018 Nov 19. Review.

PMID:
29882615
3.

On the prediction of core level binding energies in molecules, surfaces and solids.

Viñes F, Sousa C, Illas F.

Phys Chem Chem Phys. 2018 Mar 28;20(13):8403-8410. doi: 10.1039/c7cp08503f.

PMID:
29527610
4.

Theoretical evidence for the direct 3MLCT-HS deactivation in the light-induced spin crossover of Fe(ii)-polypyridyl complexes.

Sousa C, Llunell M, Domingo A, de Graaf C.

Phys Chem Chem Phys. 2018 Jan 24;20(4):2351-2355. doi: 10.1039/c7cp08098k.

PMID:
29303522
5.

Theoretical Study of the Light-Induced Spin Crossover Mechanism in [Fe(mtz)6]2+ and [Fe(phen)3]2.

Sousa C, de Graaf C, Rudavskyi A, Broer R.

J Phys Chem A. 2017 Dec 28;121(51):9720-9727. doi: 10.1021/acs.jpca.7b10687. Epub 2017 Dec 15.

PMID:
29190099
6.

Effect of Second-Order Spin-Orbit Coupling on the Interaction between Spin States in Spin-Crossover Systems.

Sousa C, Domingo A, de Graaf C.

Chemistry. 2018 Apr 6;24(20):5146-5152. doi: 10.1002/chem.201704854. Epub 2017 Dec 14.

PMID:
29143986
7.

Assessing the ability of DFT methods to describe static electron correlation effects: CO core level binding energies as a representative case.

Pueyo Bellafont N, Bagus PS, Sousa C, Illas F.

J Chem Phys. 2017 Jul 14;147(2):024106. doi: 10.1063/1.4991833.

8.

3-Methylcrotonyl-CoA carboxylase deficiency: Mutational spectrum derived from comprehensive newborn screening.

Fonseca H, Azevedo L, Serrano C, Sousa C, Marcão A, Vilarinho L.

Gene. 2016 Dec 15;594(2):203-210. doi: 10.1016/j.gene.2016.09.003. Epub 2016 Sep 4.

PMID:
27601257
9.

Semen quality, testicular B-mode and Doppler ultrasound, and serum testosterone concentrations in dogs with established infertility.

de Souza MB, England GC, Mota Filho AC, Ackermann CL, Sousa CV, de Carvalho GG, Silva HV, Pinto JN, Linhares JC, Oba E, da Silva LD.

Theriogenology. 2015 Sep 15;84(5):805-10. doi: 10.1016/j.theriogenology.2015.05.015. Epub 2015 May 27.

PMID:
26116053
10.

Using an in-vitro biofilm model to assess the virulence potential of bacterial vaginosis or non-bacterial vaginosis Gardnerella vaginalis isolates.

Castro J, Alves P, Sousa C, Cereija T, França Â, Jefferson KK, Cerca N.

Sci Rep. 2015 Jun 26;5:11640. doi: 10.1038/srep11640.

11.

Regional differences of testicular artery blood flow in post pubertal and pre-pubertal dogs.

de Souza MB, Barbosa CC, England GC, Mota Filho AC, Sousa CV, de Carvalho GG, Silva HV, Pinto JN, Linhares JC, Silva LD.

BMC Vet Res. 2015 Mar 4;11:47. doi: 10.1186/s12917-015-0363-3.

12.

Assessing and reducing sources of gene expression variability in Staphylococcus epidermidis biofilms.

Sousa C, França A, Cerca N.

Biotechniques. 2014 Dec 1;57(6):295-301. doi: 10.2144/000114238. eCollection 2014 Dec.

13.

The effect of thermal motion on the electron localization in metal-to-ligand charge transfer excitations in [Fe(bpy)3](2+).

Domingo A, Sousa C, de Graaf C.

Dalton Trans. 2014 Dec 21;43(47):17838-46. doi: 10.1039/c4dt02294g.

PMID:
25360630
14.

Computational approach to the study of thermal spin crossover phenomena.

Rudavskyi A, Sousa C, de Graaf C, Havenith RW, Broer R.

J Chem Phys. 2014 May 14;140(18):184318. doi: 10.1063/1.4875695.

PMID:
24832281
15.

Gardnerella vaginalis outcompetes 29 other bacterial species isolated from patients with bacterial vaginosis, using in an in vitro biofilm formation model.

Alves P, Castro J, Sousa C, Cereija TB, Cerca N.

J Infect Dis. 2014 Aug 15;210(4):593-6. doi: 10.1093/infdis/jiu131. Epub 2014 Mar 4.

PMID:
24596283
16.

Ultrafast deactivation mechanism of the excited singlet in the light-induced spin crossover of [Fe(2,2'-bipyridine)3]2+.

Sousa C, de Graaf C, Rudavskyi A, Broer R, Tatchen J, Etinski M, Marian CM.

Chemistry. 2013 Dec 16;19(51):17541-51. doi: 10.1002/chem.201302992. Epub 2013 Nov 7.

PMID:
24203780
17.

Explanation of the site-specific spin crossover in Fe(mtz)6(BF4)2.

Rudavskyi A, Havenith RW, Broer R, de Graaf C, Sousa C.

Dalton Trans. 2013 Oct 1;42(41):14702-9. doi: 10.1039/c3dt52027g.

PMID:
24048174
18.

Theoretical approaches to excited-state-related phenomena in oxide surfaces.

Sousa C, Tosoni S, Illas F.

Chem Rev. 2013 Jun 12;113(6):4456-95. doi: 10.1021/cr300228z. Epub 2012 Nov 29. No abstract available.

PMID:
23194313
19.

The fate of optical excitations in small polyhedral ZnS clusters: a theoretical study of the excitation and localization of electrons in Zn4S4 and Zn6S6.

Zwijnenburg MA, Sousa C, Illas F, Bromley ST.

J Chem Phys. 2011 Feb 14;134(6):064511. doi: 10.1063/1.3536501.

PMID:
21322709
20.

Study of the light-induced spin crossover process of the [Fe(II)(bpy)3]2+ complex.

de Graaf C, Sousa C.

Chemistry. 2010 Apr 19;16(15):4550-6. doi: 10.1002/chem.200903423. Epub 2010 Mar 12.

PMID:
20229537

Supplemental Content

Loading ...
Support Center