Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 38

1.

Optimization and characterization of Royal Dawn cherry (Prunus avium) phenolics extraction.

Iglesias-Carres L, Mas-Capdevila A, Bravo FI, Mulero M, Muguerza B, Arola-Arnal A.

Sci Rep. 2019 Nov 26;9(1):17626. doi: 10.1038/s41598-019-54134-w.

2.

Chrononutrition and Polyphenols: Roles and Diseases.

Arola-Arnal A, Cruz-Carrión Á, Torres-Fuentes C, Ávila-Román J, Aragonès G, Mulero M, Bravo FI, Muguerza B, Arola L, Suárez M.

Nutrients. 2019 Oct 30;11(11). pii: E2602. doi: 10.3390/nu11112602. Review.

3.

Optimization of extraction methods for characterization of phenolic compounds in apricot fruit (Prunus armeniaca).

Iglesias-Carres L, Mas-Capdevila A, Bravo FI, Bladé C, Arola-Arnal A, Muguerza B.

Food Funct. 2019 Oct 16;10(10):6492-6502. doi: 10.1039/c9fo00353c.

PMID:
31535681
4.

Exposure of Fischer 344 rats to distinct photoperiods influences the bioavailability of red grape polyphenols.

Iglesias-Carres L, Mas-Capdevila A, Bravo FI, Arola L, Muguerza B, Arola-Arnal A.

J Photochem Photobiol B. 2019 Oct;199:111623. doi: 10.1016/j.jphotobiol.2019.111623. Epub 2019 Sep 10.

5.

A comparative study on the bioavailability of phenolic compounds from organic and nonorganic red grapes.

Iglesias-Carres L, Mas-Capdevila A, Bravo FI, Aragonès G, Arola-Arnal A, Muguerza B.

Food Chem. 2019 Nov 30;299:125092. doi: 10.1016/j.foodchem.2019.125092. Epub 2019 Jun 27.

PMID:
31280001
6.

Antihyperglycemic effect of a chicken feet hydrolysate via the incretin system: DPP-IV-inhibitory activity and GLP-1 release stimulation.

Casanova-Martí À, Bravo FI, Serrano J, Ardévol A, Pinent M, Muguerza B.

Food Funct. 2019 Jul 17;10(7):4062-4070. doi: 10.1039/c9fo00695h.

PMID:
31225553
7.

Virgin olive oil (unfiltered) extract contains peptides and possesses ACE inhibitory and antihypertensive activity.

Alcaide-Hidalgo JM, Margalef M, Bravo FI, Muguerza B, López-Huertas E.

Clin Nutr. 2019 May 23. pii: S0261-5614(19)30227-4. doi: 10.1016/j.clnu.2019.05.016. [Epub ahead of print]

PMID:
31178246
8.

Novel Antihypertensive Peptides Derived from Chicken Foot Proteins.

Bravo FI, Mas-Capdevila A, Margalef M, Arola-Arnal A, Muguerza B.

Mol Nutr Food Res. 2019 Jun;63(12):e1801176. doi: 10.1002/mnfr.201801176. Epub 2019 Apr 10.

9.

Optimization of a polyphenol extraction method for sweet orange pulp (Citrus sinensis L.) to identify phenolic compounds consumed from sweet oranges.

Iglesias-Carres L, Mas-Capdevila A, Bravo FI, Aragonès G, Muguerza B, Arola-Arnal A.

PLoS One. 2019 Jan 30;14(1):e0211267. doi: 10.1371/journal.pone.0211267. eCollection 2019.

10.

Evidence that Nitric Oxide is Involved in the Blood Pressure Lowering Effect of the Peptide AVFQHNCQE in Spontaneously Hypertensive Rats.

Mas-Capdevila A, Iglesias-Carres L, Arola-Arnal A, Aragonès G, Aleixandre A, Bravo FI, Muguerza B.

Nutrients. 2019 Jan 22;11(2). pii: E225. doi: 10.3390/nu11020225.

11.

Optimized Extraction by Response Surface Methodology Used for the Characterization and Quantification of Phenolic Compounds in Whole Red Grapes (Vitis vinifera).

Iglesias-Carres L, Mas-Capdevila A, Sancho-Pardo L, Bravo FI, Mulero M, Muguerza B, Arola-Arnal A.

Nutrients. 2018 Dec 5;10(12). pii: E1931. doi: 10.3390/nu10121931.

12.

Potential Involvement of Peripheral Leptin/STAT3 Signaling in the Effects of Resveratrol and Its Metabolites on Reducing Body Fat Accumulation.

Ardid-Ruiz A, Ibars M, Mena P, Del Rio D, Muguerza B, Bladé C, Arola L, Aragonès G, Suárez M.

Nutrients. 2018 Nov 14;10(11). pii: E1757. doi: 10.3390/nu10111757.

13.

Dose-Related Antihypertensive Properties and the Corresponding Mechanisms of a Chicken Foot Hydrolysate in Hypertensive Rats.

Mas-Capdevila A, Pons Z, Aleixandre A, Bravo FI, Muguerza B.

Nutrients. 2018 Sep 12;10(9). pii: E1295. doi: 10.3390/nu10091295.

14.

Flavanol plasma bioavailability is affected by metabolic syndrome in rats.

Margalef M, Pons Z, Iglesias-Carres L, Bravo FI, Muguerza B, Arola-Arnal A.

Food Chem. 2017 Sep 15;231:287-294. doi: 10.1016/j.foodchem.2017.03.141. Epub 2017 Mar 27.

PMID:
28450008
15.

Chronic administration of grape-seed polyphenols attenuates the development of hypertension and improves other cardiometabolic risk factors associated with the metabolic syndrome in cafeteria diet-fed rats.

Pons Z, Margalef M, Bravo FI, Arola-Arnal A, Muguerza B.

Br J Nutr. 2017 Jan;117(2):200-208. doi: 10.1017/S0007114516004426. Epub 2017 Feb 6.

PMID:
28162106
16.

Rat health status affects bioavailability, target tissue levels, and bioactivity of grape seed flavanols.

Margalef M, Pons Z, Iglesias-Carres L, Quiñones M, Bravo FI, Arola-Arnal A, Muguerza B.

Mol Nutr Food Res. 2017 Feb;61(2). doi: 10.1002/mnfr.201600342. Epub 2016 Nov 3.

PMID:
27624317
17.

Age related differences in the plasma kinetics of flavanols in rats.

Margalef M, Iglesias-Carres L, Pons Z, Bravo FI, Muguerza B, Arola-Arnal A.

J Nutr Biochem. 2016 Mar;29:90-6. doi: 10.1016/j.jnutbio.2015.11.007. Epub 2015 Nov 24.

PMID:
26895669
18.

Gender-related similarities and differences in the body distribution of grape seed flavanols in rats.

Margalef M, Pons Z, Iglesias-Carres L, Arola L, Muguerza B, Arola-Arnal A.

Mol Nutr Food Res. 2016 Apr;60(4):760-72. doi: 10.1002/mnfr.201500717. Epub 2016 Mar 7.

PMID:
26799813
19.

Proanthocyanidins in health and disease.

Bladé C, Aragonès G, Arola-Arnal A, Muguerza B, Bravo FI, Salvadó MJ, Arola L, Suárez M.

Biofactors. 2016 Jan-Feb;42(1):5-12. doi: 10.1002/biof.1249. Epub 2016 Jan 13. Review.

PMID:
26762288
20.

Lack of tissue accumulation of grape seed flavanols after daily long-term administration in healthy and cafeteria-diet obese rats.

Margalef M, Pons Z, Iglesias-Carres L, Bravo FI, Muguerza B, Arola-Arnal A.

J Agric Food Chem. 2015 Nov 18;63(45):9996-10003. doi: 10.1021/acs.jafc.5b03856. Epub 2015 Nov 10.

PMID:
26496863

Supplemental Content

Loading ...
Support Center