Format

Send to

Choose Destination
J Colloid Interface Sci. 2011 Jun 1;358(1):62-7. doi: 10.1016/j.jcis.2011.02.039. Epub 2011 Feb 23.

Experimental study of electrostatically stabilized colloidal particles: colloidal stability and charge reversal.

Author information

1
F-I2 Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin, Berlin, Germany. christian.schneider@helmholtz-berlin.de

Abstract

We consider the interaction of colloidal spheres in the presence of mono-, di-, and trivalent ions. The colloids are stabilized by electrostatic repulsion due to surface charges. The repulsive part of the interaction potential Ψ(d) is deduced from precise measurements of the rate of slow coagulation. These "microsurface potential measurements" allow us to determine a weak repulsion in which Ψ(d) is of the order of a few k(B)T. These data are compared to ζ potential measured under similar conditions. At higher concentrations both di- and trivalent counterions accumulate at the very proximity of the particle surface leading to charge reversal. The salt concentration c(cr) at which charge reversal occurs is found to be always above the critical coagulation concentration c(ccc). The analysis of Ψ(d) and of the ζ potential demonstrates, however, that adsorption of multivalent counterions starts far below c(cr). Hence, colloid stability in the presence of di- and trivalent ions cannot be described in terms of a DLVO ansatz assuming a surface charge that is constant with regard to the ionic strength.

PMID:
21419414
DOI:
10.1016/j.jcis.2011.02.039

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center