Send to

Choose Destination
Sensors (Basel). 2019 Dec 9;19(24). pii: E5421. doi: 10.3390/s19245421.

Individual Tree Crown Delineation Using Multispectral LiDAR Data.

Author information

Department of Earth and Space Science and Engineering, York University, Keele Street, Toronto 4700, ON M3J 1P3, Canada.
Education and Research, Esri Canada, 900-12 Concorde Pl, Toronto 4700, ON M3C 3R8, Canada.


In this study, multispectral Light Detection and Ranging (LiDAR) data were utilized to improve delineation of individual tree crowns (ITC) as an important step in individual tree analysis. A framework to integrate spectral and height information for ITC delineation was proposed, and the multi-scale algorithm for treetop detection developed in one of our previous studies was improved. In addition, an advanced region-based segmentation method that used detected treetops as seeds was proposed for segmentation of individual crowns based on their spectral, contextual, and height information. The proposed methods were validated with data acquired using Teledyne Optech's Titan LiDAR sensor. The sensor was operated at three wavelengths (1550 nm, 1064 nm, and 532 nm) within a study area located in the city of Toronto, ON, Canada. The proposed method achieved 80% accuracy, compared with manual delineation of crowns, considering both matched and partially matched crowns, which was 12% higher than that obtained by the earlier marker-controlled watershed (MCW) segmentation technique. Furthermore, the results showed that the integration of spectral and height information improved ITC delineation using either the proposed framework or MCW segmentation, compared with using either spectral or height information individually.


individual tree crown delineation; multi-scale analysis; multispectral LiDAR; neutrosophic logic; seeded region growing

Supplemental Content

Full text links

Icon for Multidisciplinary Digital Publishing Institute (MDPI) Icon for PubMed Central
Loading ...
Support Center