Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 72

1.

Effects of the pyrolysis temperature on the biotoxicity of Phyllostachys pubescens biochar in the aquatic environment.

Zhang C, Shan B, Jiang S, Tang W.

J Hazard Mater. 2019 Aug 15;376:48-57. doi: 10.1016/j.jhazmat.2019.05.010. Epub 2019 May 6.

PMID:
31121452
2.

The effects of urbanization and rainfall on the distribution of, and risks from, phenolic environmental estrogens in river sediment.

Li Z, Zhang W, Shan B.

Environ Pollut. 2019 Jul;250:1010-1018. doi: 10.1016/j.envpol.2019.04.108. Epub 2019 Apr 23.

PMID:
31085467
3.

Identifying sediment-associated toxicity in rivers affected by multiple pollutants from the contaminant bioavailability.

Zhang C, Shan B, Tang W, Wang C, Zhang L.

Ecotoxicol Environ Saf. 2019 Apr 30;171:84-91. doi: 10.1016/j.ecoenv.2018.12.075. Epub 2018 Dec 28.

PMID:
30597320
4.

Comprehensive analysis of nitrogen distributions and ammonia nitrogen release fluxes in the sediments of Baiyangdian Lake, China.

Zhu Y, Jin X, Tang W, Meng X, Shan B.

J Environ Sci (China). 2019 Feb;76:319-328. doi: 10.1016/j.jes.2018.05.024. Epub 2018 Jun 14.

PMID:
30528023
5.

Spatial and temporal variations of nutrition in representative river networks in Southwest China.

Zhang W, Jin X, Shan B.

Environ Monit Assess. 2018 Nov 9;190(12):707. doi: 10.1007/s10661-018-7076-6.

PMID:
30411232
6.

Analysis of Bacterial Communities in Partial Nitritation and Conventional Nitrification Systems for Nitrogen Removal.

Zhao Z, Luo J, Jin B, Zhang J, Li B, Ma B, An X, Zhang S, Shan B.

Sci Rep. 2018 Aug 28;8(1):12930. doi: 10.1038/s41598-018-30532-4.

7.

Remediation effectiveness of Phyllostachys pubescens biochar in reducing the bioavailability and bioaccumulation of metals in sediments.

Zhang C, Shan B, Zhu Y, Tang W.

Environ Pollut. 2018 Nov;242(Pt B):1768-1776. doi: 10.1016/j.envpol.2018.07.091. Epub 2018 Jul 28.

PMID:
30072221
8.

Using biochar capping to reduce nitrogen release from sediments in eutrophic lakes.

Zhu Y, Tang W, Jin X, Shan B.

Sci Total Environ. 2019 Jan 1;646:93-104. doi: 10.1016/j.scitotenv.2018.07.277. Epub 2018 Jul 21.

PMID:
30053668
9.

Contribution of particulate matter in storm runoff to organic phosphorus loads in urban rivers.

Zhang W, Jin X, Meng X, Shan B.

Environ Sci Pollut Res Int. 2018 Aug;25(23):23342-23348. doi: 10.1007/s11356-018-2225-6. Epub 2018 Jun 5.

PMID:
29872981
10.

The effect of anthropogenic activities on the phosphorus-buffering intensity of the two contrasting rivers in northern China.

Jin X, Zhang W, Zhu Y, Shan B.

Environ Sci Pollut Res Int. 2018 Aug;25(23):23195-23204. doi: 10.1007/s11356-018-2337-z. Epub 2018 Jun 3.

PMID:
29862478
11.

Relationship of bioaccessibility and fractionation of cadmium in long-term spiked soils for health risk assessment based on four in vitro gastrointestinal simulation models.

Tang W, Xia Q, Shan B, Ng JC.

Sci Total Environ. 2018 Aug 1;631-632:1582-1589. doi: 10.1016/j.scitotenv.2018.03.154. Epub 2018 Mar 28.

PMID:
29727982
12.

Characteristics of suspended particulate matter in a typical slow-moving river of northern China: Insight into its structure and motion behavior.

Jin X, Zhang W, Zhu Y, Shan B.

Chemosphere. 2018 Jul;202:521-529. doi: 10.1016/j.chemosphere.2018.03.139. Epub 2018 Mar 21.

PMID:
29587233
13.

Phosphorus transformations at the sediment-water interface in shallow freshwater ecosystems caused by decomposition of plant debris.

Zhang W, Jin X, Meng X, Tang W, Shan B.

Chemosphere. 2018 Jun;201:328-334. doi: 10.1016/j.chemosphere.2018.03.006. Epub 2018 Mar 3.

PMID:
29525661
14.

Data collected in an integrated ecological survey of rotifer communities and corresponding environmental variables in the highly polluted Haihe River Basin, China.

Xiong W, Li J, Yang Y, Wang W, Shan B, Zhan A.

Data Brief. 2018 Jan 3;17:141-147. doi: 10.1016/j.dib.2017.12.062. eCollection 2018 Apr.

15.

Evaluating the diffusive gradients in thin films technique for the prediction of metal bioaccumulation in plants grown in river sediments.

Song Z, Shan B, Tang W.

J Hazard Mater. 2018 Feb 15;344:360-368. doi: 10.1016/j.jhazmat.2017.10.049. Epub 2017 Oct 25.

PMID:
29080489
16.

Assessment of potential bioavailability of heavy metals in the sediments of land-freshwater interfaces by diffusive gradients in thin films.

Song Z, Dong L, Shan B, Tang W.

Chemosphere. 2018 Jan;191:218-225. doi: 10.1016/j.chemosphere.2017.10.048. Epub 2017 Oct 9.

PMID:
29035793
17.

Overestimation of orthophosphate monoesters in lake sediment by solution 31P-NMR analysis.

Zhang W, Jin X, Tang W, Shan B.

Environ Sci Pollut Res Int. 2017 Nov;24(32):25469-25474. doi: 10.1007/s11356-017-0211-z. Epub 2017 Sep 30.

PMID:
28965210
18.

A scheme to scientifically and accurately assess cadmium pollution of river sediments, through consideration of bioavailability when assessing ecological risk.

Song Z, Tang W, Shan B.

Chemosphere. 2017 Oct;185:602-609. doi: 10.1016/j.chemosphere.2017.07.059. Epub 2017 Jul 14.

PMID:
28719880
19.

Comprehensive analysis of mercury pollution in the surface riverine sediments in the Haihe Basin, China.

Tang W, Shan B, Zhao Y, Wang X.

Environ Sci Pollut Res Int. 2017 Sep;24(25):20794-20802. doi: 10.1007/s11356-017-9681-2. Epub 2017 Jul 17.

PMID:
28718027
20.

Assessment of the sediment quality of freshwater ecosystems in eastern China based on spatial and temporal variation of nutrients.

Zhang W, Jin X, Liu D, Tang W, Shan B.

Environ Sci Pollut Res Int. 2017 Aug;24(23):19412-19421. doi: 10.1007/s11356-017-9532-1. Epub 2017 Jul 4.

PMID:
28677039

Supplemental Content

Loading ...
Support Center