Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 14

1.

Mechanisms by which PE21, an extract from the white willow Salix alba, delays chronological aging in budding yeast.

Medkour Y, Mohammad K, Arlia-Ciommo A, Svistkova V, Dakik P, Mitrofanova D, Rodriguez MEL, Junio JAB, Taifour T, Escudero P, Goltsios FF, Soodbakhsh S, Maalaoui H, Simard É, Titorenko VI.

Oncotarget. 2019 Oct 8;10(56):5780-5816. doi: 10.18632/oncotarget.27209. eCollection 2019 Oct 8.

2.

Mechanisms through which lithocholic acid delays yeast chronological aging under caloric restriction conditions.

Arlia-Ciommo A, Leonov A, Mohammad K, Beach A, Richard VR, Bourque SD, Burstein MT, Goldberg AA, Kyryakov P, Gomez-Perez A, Koupaki O, Titorenko VI.

Oncotarget. 2018 Oct 9;9(79):34945-34971. doi: 10.18632/oncotarget.26188. eCollection 2018 Oct 9.

3.

Caloric restriction delays yeast chronological aging by remodeling carbohydrate and lipid metabolism, altering peroxisomal and mitochondrial functionalities, and postponing the onsets of apoptotic and liponecrotic modes of regulated cell death.

Arlia-Ciommo A, Leonov A, Beach A, Richard VR, Bourque SD, Burstein MT, Kyryakov P, Gomez-Perez A, Koupaki O, Feldman R, Titorenko VI.

Oncotarget. 2018 Mar 5;9(22):16163-16184. doi: 10.18632/oncotarget.24604. eCollection 2018 Mar 23.

4.

Caloric restriction extends yeast chronological lifespan via a mechanism linking cellular aging to cell cycle regulation, maintenance of a quiescent state, entry into a non-quiescent state and survival in the non-quiescent state.

Leonov A, Feldman R, Piano A, Arlia-Ciommo A, Lutchman V, Ahmadi M, Elsaser S, Fakim H, Heshmati-Moghaddam M, Hussain A, Orfali S, Rajen H, Roofigari-Esfahani N, Rosanelli L, Titorenko VI.

Oncotarget. 2017 Sep 1;8(41):69328-69350. doi: 10.18632/oncotarget.20614. eCollection 2017 Sep 19.

5.

Specific changes in mitochondrial lipidome alter mitochondrial proteome and increase the geroprotective efficiency of lithocholic acid in chronologically aging yeast.

Leonov A, Arlia-Ciommo A, Bourque SD, Koupaki O, Kyryakov P, Dakik P, McAuley M, Medkour Y, Mohammad K, Di Maulo T, Titorenko VI.

Oncotarget. 2017 May 9;8(19):30672-30691. doi: 10.18632/oncotarget.16766.

6.

Discovery of plant extracts that greatly delay yeast chronological aging and have different effects on longevity-defining cellular processes.

Lutchman V, Medkour Y, Samson E, Arlia-Ciommo A, Dakik P, Cortes B, Feldman R, Mohtashami S, McAuley M, Chancharoen M, Rukundo B, Simard É, Titorenko VI.

Oncotarget. 2016 Mar 29;7(13):16542-66. doi: 10.18632/oncotarget.7665.

7.

A novel approach to the discovery of anti-tumor pharmaceuticals: searching for activators of liponecrosis.

Arlia-Ciommo A, Svistkova V, Mohtashami S, Titorenko VI.

Oncotarget. 2016 Feb 2;7(5):5204-25. doi: 10.18632/oncotarget.6440. Review.

8.

Longevity extension by phytochemicals.

Leonov A, Arlia-Ciommo A, Piano A, Svistkova V, Lutchman V, Medkour Y, Titorenko VI.

Molecules. 2015 Apr 13;20(4):6544-72. doi: 10.3390/molecules20046544. Review.

9.

Lithocholic bile acid accumulated in yeast mitochondria orchestrates a development of an anti-aging cellular pattern by causing age-related changes in cellular proteome.

Beach A, Richard VR, Bourque S, Boukh-Viner T, Kyryakov P, Gomez-Perez A, Arlia-Ciommo A, Feldman R, Leonov A, Piano A, Svistkova V, Titorenko VI.

Cell Cycle. 2015;14(11):1643-56. doi: 10.1080/15384101.2015.1026493.

10.

Mechanisms by which different functional states of mitochondria define yeast longevity.

Beach A, Leonov A, Arlia-Ciommo A, Svistkova V, Lutchman V, Titorenko VI.

Int J Mol Sci. 2015 Mar 11;16(3):5528-54. doi: 10.3390/ijms16035528. Review.

11.

Quasi-programmed aging of budding yeast: a trade-off between programmed processes of cell proliferation, differentiation, stress response, survival and death defines yeast lifespan.

Arlia-Ciommo A, Piano A, Leonov A, Svistkova V, Titorenko VI.

Cell Cycle. 2014;13(21):3336-49. doi: 10.4161/15384101.2014.965063. Review.

12.

Mechanism of liponecrosis, a distinct mode of programmed cell death.

Richard VR, Beach A, Piano A, Leonov A, Feldman R, Burstein MT, Kyryakov P, Gomez-Perez A, Arlia-Ciommo A, Baptista S, Campbell C, Goncharov D, Pannu S, Patrinos D, Sadri B, Svistkova V, Victor A, Titorenko VI.

Cell Cycle. 2014;13(23):3707-26. doi: 10.4161/15384101.2014.965003.

13.

Mechanisms underlying the anti-aging and anti-tumor effects of lithocholic bile acid.

Arlia-Ciommo A, Piano A, Svistkova V, Mohtashami S, Titorenko VI.

Int J Mol Sci. 2014 Sep 18;15(9):16522-43. doi: 10.3390/ijms150916522. Review.

14.

Cell-autonomous mechanisms of chronological aging in the yeast Saccharomyces cerevisiae.

Arlia-Ciommo A, Leonov A, Piano A, Svistkova V, Titorenko VI.

Microb Cell. 2014 May 27;1(6):163-178. doi: 10.15698/mic2014.06.152. Review.

Supplemental Content

Loading ...
Support Center