Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 21

1.

Assessment of Fusarium Infection and Mycotoxin Contamination of Wheat Kernels and Flour Using Hyperspectral Imaging.

Alisaac E, Behmann J, Rathgeb A, Karlovsky P, Dehne HW, Mahlein AK.

Toxins (Basel). 2019 Sep 21;11(10). pii: E556. doi: 10.3390/toxins11100556.

2.

A Systematic Review on the Value of Infrared Thermography in the Early Detection of Periprosthetic Joint Infections.

Scheidt S, Rüwald J, Schildberg FA, Mahlein AK, Seuser A, Wirtz DC, Jacobs C.

Z Orthop Unfall. 2019 Sep 16. doi: 10.1055/a-0969-8675. [Epub ahead of print] English, German.

PMID:
31525794
3.

Quantitative and qualitative phenotyping of disease resistance of crops by hyperspectral sensors: seamless interlocking of phytopathology, sensors, and machine learning is needed!

Mahlein AK, Kuska MT, Thomas S, Wahabzada M, Behmann J, Rascher U, Kersting K.

Curr Opin Plant Biol. 2019 Aug;50:156-162. doi: 10.1016/j.pbi.2019.06.007. Epub 2019 Aug 3. Review.

PMID:
31387067
4.

Comparison and Combination of Thermal, Fluorescence, and Hyperspectral Imaging for Monitoring Fusarium Head Blight of Wheat on Spikelet Scale.

Mahlein AK, Alisaac E, Al Masri A, Behmann J, Dehne HW, Oerke EC.

Sensors (Basel). 2019 May 17;19(10). pii: E2281. doi: 10.3390/s19102281.

5.

Discovering coherency of specific gene expression and optical reflectance properties of barley genotypes differing for resistance reactions against powdery mildew.

Kuska MT, Behmann J, Namini M, Oerke EC, Steiner U, Mahlein AK.

PLoS One. 2019 Mar 19;14(3):e0213291. doi: 10.1371/journal.pone.0213291. eCollection 2019.

6.

Screening of Barley Resistance Against Powdery Mildew by Simultaneous High-Throughput Enzyme Activity Signature Profiling and Multispectral Imaging.

Kuska MT, Behmann J, Großkinsky DK, Roitsch T, Mahlein AK.

Front Plant Sci. 2018 Jul 23;9:1074. doi: 10.3389/fpls.2018.01074. eCollection 2018.

7.

Quantitative assessment of disease severity and rating of barley cultivars based on hyperspectral imaging in a non-invasive, automated phenotyping platform.

Thomas S, Behmann J, Steier A, Kraska T, Muller O, Rascher U, Mahlein AK.

Plant Methods. 2018 Jun 8;14:45. doi: 10.1186/s13007-018-0313-8. eCollection 2018.

8.
9.

Specim IQ: Evaluation of a New, Miniaturized Handheld Hyperspectral Camera and Its Application for Plant Phenotyping and Disease Detection.

Behmann J, Acebron K, Emin D, Bennertz S, Matsubara S, Thomas S, Bohnenkamp D, Kuska MT, Jussila J, Salo H, Mahlein AK, Rascher U.

Sensors (Basel). 2018 Feb 2;18(2). pii: E441. doi: 10.3390/s18020441.

10.

Monitoring wound healing in a 3D wound model by hyperspectral imaging and efficient clustering.

Wahabzada M, Besser M, Khosravani M, Kuska MT, Kersting K, Mahlein AK, Stürmer E.

PLoS One. 2017 Dec 7;12(12):e0186425. doi: 10.1371/journal.pone.0186425. eCollection 2017.

11.

Spectral Patterns Reveal Early Resistance Reactions of Barley Against Blumeria graminis f. sp. hordei.

Kuska MT, Brugger A, Thomas S, Wahabzada M, Kersting K, Oerke EC, Steiner U, Mahlein AK.

Phytopathology. 2017 Nov;107(11):1388-1398. doi: 10.1094/PHYTO-04-17-0128-R. Epub 2017 Sep 7.

PMID:
28665761
12.

Plant Phenotyping using Probabilistic Topic Models: Uncovering the Hyperspectral Language of Plants.

Wahabzada M, Mahlein AK, Bauckhage C, Steiner U, Oerke EC, Kersting K.

Sci Rep. 2016 Mar 9;6:22482. doi: 10.1038/srep22482.

13.

Plant Disease Detection by Imaging Sensors - Parallels and Specific Demands for Precision Agriculture and Plant Phenotyping.

Mahlein AK.

Plant Dis. 2016 Feb;100(2):241-251. doi: 10.1094/PDIS-03-15-0340-FE. Epub 2016 Jan 18.

PMID:
30694129
14.

Improvement of Lesion Phenotyping in Cercospora beticola-Sugar Beet Interaction by Hyperspectral Imaging.

Leucker M, Mahlein AK, Steiner U, Oerke EC.

Phytopathology. 2016 Feb;106(2):177-84. doi: 10.1094/PHYTO-04-15-0100-R. Epub 2015 Dec 29.

15.

Automated interpretation of 3D laserscanned point clouds for plant organ segmentation.

Wahabzada M, Paulus S, Kersting K, Mahlein AK.

BMC Bioinformatics. 2015 Aug 8;16:248. doi: 10.1186/s12859-015-0665-2.

16.

Supplemental blue LED lighting array to improve the signal quality in hyperspectral imaging of plants.

Mahlein AK, Hammersley S, Oerke EC, Dehne HW, Goldbach H, Grieve B.

Sensors (Basel). 2015 Jun 1;15(6):12834-40. doi: 10.3390/s150612834.

17.

Hyperspectral phenotyping on the microscopic scale: towards automated characterization of plant-pathogen interactions.

Kuska M, Wahabzada M, Leucker M, Dehne HW, Kersting K, Oerke EC, Steiner U, Mahlein AK.

Plant Methods. 2015 Apr 15;11:28. doi: 10.1186/s13007-015-0073-7. eCollection 2015.

18.

Metro maps of plant disease dynamics--automated mining of differences using hyperspectral images.

Wahabzada M, Mahlein AK, Bauckhage C, Steiner U, Oerke EC, Kersting K.

PLoS One. 2015 Jan 26;10(1):e0116902. doi: 10.1371/journal.pone.0116902. eCollection 2015.

19.

Low-cost 3D systems: suitable tools for plant phenotyping.

Paulus S, Behmann J, Mahlein AK, Plümer L, Kuhlmann H.

Sensors (Basel). 2014 Feb 14;14(2):3001-18. doi: 10.3390/s140203001.

20.

Surface feature based classification of plant organs from 3D laserscanned point clouds for plant phenotyping.

Paulus S, Dupuis J, Mahlein AK, Kuhlmann H.

BMC Bioinformatics. 2013 Jul 27;14:238. doi: 10.1186/1471-2105-14-238.

Supplemental Content

Loading ...
Support Center