Format

Send to

Choose Destination
Molecules. 2018 Dec 1;23(12). pii: E3168. doi: 10.3390/molecules23123168.

Evaluation of [68Ga]Ga-DOTA-TCTP-1 for the Detection of Metalloproteinase 2/9 Expression in Mouse Atherosclerotic Plaques.

Author information

1
Turku PET Centre, University of Turku, FI-20520 Turku, Finland. max.kiugel@utu.fi.
2
Turku PET Centre, University of Turku, FI-20520 Turku, Finland. sanna.hellberg@ki.se.
3
Turku PET Centre, University of Turku, FI-20520 Turku, Finland. meeri.kakela@utu.fi.
4
Turku PET Centre, University of Turku, FI-20520 Turku, Finland. halilj@utu.fi.
5
Turku Center for Disease Modeling, University of Turku, FI-20520 Turku, Finland. halilj@utu.fi.
6
Turku PET Centre, University of Turku, FI-20520 Turku, Finland. tiina.saanijoki@utu.fi.
7
Turku PET Centre, Åbo Akademi University, FI-20520 Turku, Finland. xiali@utu.fi.
8
Department of Cell Biology and Anatomy, University of Turku, FI-20520 Turku, Finland. johanna.tuomela@utu.fi.
9
Turku PET Centre, University of Turku, FI-20520 Turku, Finland. juhani.knuuti@utu.fi.
10
Turku PET Centre, Turku University Hospital, FI-20520 Turku, Finland. juhani.knuuti@utu.fi.
11
Turku PET Centre, University of Turku, FI-20520 Turku, Finland. antti.saraste@utu.fi.
12
Turku PET Centre, Turku University Hospital, FI-20520 Turku, Finland. antti.saraste@utu.fi.
13
Heart Center, Turku University Hospital, FI-20520 Turku, Finland. antti.saraste@utu.fi.
14
Institute of Clinical Medicine, University of Turku, FI-20520 Turku, Finland. antti.saraste@utu.fi.
15
Turku PET Centre, University of Turku, FI-20520 Turku, Finland. anne.roivainen@utu.fi.
16
Turku Center for Disease Modeling, University of Turku, FI-20520 Turku, Finland. anne.roivainen@utu.fi.
17
Turku PET Centre, Turku University Hospital, FI-20520 Turku, Finland. anne.roivainen@utu.fi.

Abstract

Background: The expression of matrix metalloproteinases 2/9 (MMP-2/9) has been implicated in arterial remodeling and inflammation in atherosclerosis. We evaluated a gallium-68 labeled peptide for the detection of MMP-2/9 in atherosclerotic mouse aorta. Methods: We studied sixteen low-density lipoprotein receptor deficient mice (LDLR-/-ApoB100/100) kept on a Western-type diet. Distribution of intravenously-injected MMP-2/9-targeting peptide, [68Ga]Ga-DOTA-TCTP-1, was studied by combined positron emission tomography (PET) and contrast-enhanced computed tomography (CT). At 60 min post-injection, aortas were cut into cryosections for autoradiography analysis of tracer uptake, histology, and immunohistochemistry. Zymography was used to assess MMP-2/9 activation and pre-treatment with MMP-2/9 inhibitor to assess the specificity of tracer uptake. Results: Tracer uptake was not visible by in vivo PET/CT in the atherosclerotic aorta, but ex vivo autoradiography revealed 1.8 ± 0.34 times higher tracer uptake in atherosclerotic plaques than in normal vessel wall (p = 0.0029). Tracer uptake in plaques correlated strongly with the quantity of Mac-3-positive macrophages (R = 0.91, p < 0.001), but weakly with MMP-9 staining (R = 0.40, p = 0.099). Zymography showed MMP-2 activation in the aorta, and pre-treatment with MMP-2/9 inhibitor decreased tracer uptake by 55% (p = 0.0020). Conclusions: The MMP-2/9-targeting [68Ga]Ga-DOTA-TCTP-1 shows specific uptake in inflamed atherosclerotic lesions; however, a low target-to-background ratio precluded in vivo vascular imaging. Our results suggest, that the affinity of gelatinase imaging probes should be steered towards activated MMP-2, to reduce the interference of circulating enzymes on the target visualization in vivo.

KEYWORDS:

atherosclerosis; imaging; matrix metalloproteinase; plaque; positron emission tomography

PMID:
30513758
PMCID:
PMC6321344
DOI:
10.3390/molecules23123168
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Multidisciplinary Digital Publishing Institute (MDPI) Icon for PubMed Central
Loading ...
Support Center