Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 14

1.

An amphiphilic invertible polymer as a delivery vehicle for a M2e-HA2-HA1 peptide vaccine against an Influenza A virus in pigs.

Singh G, Zholobko O, Pillatzki A, Webb B, Nelson E, Voronov A, Ramamoorthy S.

Vaccine. 2019 Jul 18;37(31):4291-4301. doi: 10.1016/j.vaccine.2019.06.030. Epub 2019 Jun 21.

PMID:
31235376
2.

Macromolecular inversion-driven polymer insertion into model lipid bilayer membranes.

Ramadurai S, Kohut A, Sarangi NK, Zholobko O, Baulin VA, Voronov A, Keyes TE.

J Colloid Interface Sci. 2019 Apr 15;542:483-494. doi: 10.1016/j.jcis.2019.01.093. Epub 2019 Jan 30.

PMID:
30772510
3.

Invertible micellar polymer nanoassemblies target bone tumor cells but not normal osteoblast cells.

Kudina O, Shogren KL, Gustafson CT, Yaszemski MJ, Maran A, Voronov A.

Future Sci OA. 2015 Nov 1;1(3):FSO16. doi: 10.4155/fso.15.14. eCollection 2015 Nov.

4.

Free-Radical Copolymerization Behavior of Plant-Oil-Based Vinyl Monomers and Their Feasibility in Latex Synthesis.

Demchuk Z, Shevchuk O, Tarnavchyk I, Kirianchuk V, Lorenson M, Kohut A, Voronov S, Voronov A.

ACS Omega. 2016 Dec 22;1(6):1374-1382. doi: 10.1021/acsomega.6b00308. eCollection 2016 Dec 31.

5.

Curcumin and Osteosarcoma: Can Invertible Polymeric Micelles Help?

Maran A, Yaszemski MJ, Kohut A, Voronov A.

Materials (Basel). 2016 Jun 27;9(7). pii: E520. doi: 10.3390/ma9070520. Review.

6.

Modeling the Effect of pH and Temperature for Cellulases Immobilized on Enzymogel Nanoparticles.

Samaratunga A, Kudina O, Nahar N, Zakharchenko A, Minko S, Voronov A, Pryor SW.

Appl Biochem Biotechnol. 2015 Jun;176(4):1114-30. doi: 10.1007/s12010-015-1633-z. Epub 2015 May 3.

PMID:
25935220
7.

Impact of enzyme loading on the efficacy and recovery of cellulolytic enzymes immobilized on enzymogel nanoparticles.

Samaratunga A, Kudina O, Nahar N, Zakharchenko A, Minko S, Voronov A, Pryor SW.

Appl Biochem Biotechnol. 2015 Mar;175(6):2872-82. doi: 10.1007/s12010-014-1463-4. Epub 2015 Jan 7.

PMID:
25564204
8.

Solvent-responsive self-assembly of amphiphilic invertible polymers determined with SANS.

Kudina O, Kohut A, Tarnavchyk I, Hevus I, Voronov A.

Langmuir. 2014 Apr 1;30(12):3310-8. doi: 10.1021/la404939w. Epub 2014 Mar 18.

PMID:
24606021
9.

Highly efficient phase boundary biocatalysis with enzymogel nanoparticles.

Kudina O, Zakharchenko A, Trotsenko O, Tokarev A, Ionov L, Stoychev G, Puretskiy N, Pryor SW, Voronov A, Minko S.

Angew Chem Int Ed Engl. 2014 Jan 7;53(2):483-7. doi: 10.1002/anie.201306831. Epub 2013 Nov 8.

PMID:
24214279
10.

Invertible micellar polymer assemblies for delivery of poorly water-soluble drugs.

Hevus I, Modgil A, Daniels J, Kohut A, Sun C, Stafslien S, Voronov A.

Biomacromolecules. 2012 Aug 13;13(8):2537-45. doi: 10.1021/bm3007924. Epub 2012 Jul 13.

PMID:
22759064
11.

Host-guest interactions between a nonmicellized amphiphilic invertible polymer and insoluble cyclohexasilane in acetonitrile.

Kohut A, Kudina O, Dai X, Schulz DL, Voronov A.

Langmuir. 2011 Sep 6;27(17):10356-9. doi: 10.1021/la201883f. Epub 2011 Aug 2.

PMID:
21797281
12.

Reactive hydrogel networks for the fabrication of metal-polymer nanocomposites.

Tarnavchyk I, Voronov A, Kohut A, Nosova N, Varvarenko S, Samaryk V, Voronov S.

Macromol Rapid Commun. 2009 Sep 17;30(18):1564-9. doi: 10.1002/marc.200900285. Epub 2009 Jul 8.

PMID:
21638422
13.

Hierarchical micellar structures from amphiphilic invertible polyesters: 1H NMR spectroscopic study.

Kohut A, Voronov A.

Langmuir. 2009 Apr 21;25(8):4356-60. doi: 10.1021/la900700u.

PMID:
19309118
14.

Invertible architectures from amphiphilic polyesters.

Voronov A, Kohut A, Peukert W, Voronov S, Gevus O, Tokarev V.

Langmuir. 2006 Feb 28;22(5):1946-8.

PMID:
16489770

Supplemental Content

Loading ...
Support Center