Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 6

1.

Tuning physicochemical and biological properties of chitosan through complexation with transition metal ions.

Rogina A, Lončarević A, Antunović M, Marijanović I, Ivanković M, Ivanković H.

Int J Biol Macromol. 2019 May 15;129:645-652. doi: 10.1016/j.ijbiomac.2019.02.075. Epub 2019 Feb 14.

PMID:
30771388
2.

Injectable chitosan-hydroxyapatite hydrogels promote the osteogenic differentiation of mesenchymal stem cells.

Ressler A, Ródenas-Rochina J, Ivanković M, Ivanković H, Rogina A, Gallego Ferrer G.

Carbohydr Polym. 2018 Oct 1;197:469-477. doi: 10.1016/j.carbpol.2018.06.029. Epub 2018 Jun 6.

PMID:
30007636
3.

Biomimetic design of bone substitutes based on cuttlefish bone-derived hydroxyapatite and biodegradable polymers.

Rogina A, Antunović M, Milovac D.

J Biomed Mater Res B Appl Biomater. 2019 Jan;107(1):197-204. doi: 10.1002/jbm.b.34111. Epub 2018 Mar 23.

PMID:
29573130
4.

Human Mesenchymal Stem Cells Differentiation Regulated by Hydroxyapatite Content within Chitosan-Based Scaffolds under Perfusion Conditions.

Rogina A, Antunović M, Pribolšan L, Caput Mihalić K, Vukasović A, Ivković A, Marijanović I, Gallego Ferrer G, Ivanković M, Ivanković H.

Polymers (Basel). 2017 Aug 23;9(9). pii: E387. doi: 10.3390/polym9090387.

5.

Cellular hydrogels based on pH-responsive chitosan-hydroxyapatite system.

Rogina A, Ressler A, Matić I, Gallego Ferrer G, Marijanović I, Ivanković M, Ivanković H.

Carbohydr Polym. 2017 Jun 15;166:173-182. doi: 10.1016/j.carbpol.2017.02.105. Epub 2017 Feb 27.

PMID:
28385221
6.

In Situ Hydroxyapatite Content Affects the Cell Differentiation on Porous Chitosan/Hydroxyapatite Scaffolds.

Rogina A, Rico P, Gallego Ferrer G, Ivanković M, Ivanković H.

Ann Biomed Eng. 2016 Apr;44(4):1107-19. doi: 10.1007/s10439-015-1418-0. Epub 2015 Aug 12.

PMID:
26265459

Supplemental Content

Loading ...
Support Center