Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 12

1.

Adaptation and application of a two-plasmid inducible CRISPR-Cas9 system in Clostridium beijerinckii.

Diallo M, Hocq R, Collas F, Chartier G, Wasels F, Wijaya HS, Werten MWT, Wolbert EJH, Kengen SWM, van der Oost J, Ferreira NL, López-Contreras AM.

Methods. 2020 Feb 1;172:51-60. doi: 10.1016/j.ymeth.2019.07.022. Epub 2019 Jul 27.

2.

l-Rhamnose Metabolism in Clostridium beijerinckii Strain DSM 6423.

Diallo M, Simons AD, van der Wal H, Collas F, Houweling-Tan B, Kengen SWM, López-Contreras AM.

Appl Environ Microbiol. 2019 Feb 20;85(5). pii: e02656-18. doi: 10.1128/AEM.02656-18. Print 2019 Mar 1.

3.

A two-plasmid inducible CRISPR/Cas9 genome editing tool for Clostridium acetobutylicum.

Wasels F, Jean-Marie J, Collas F, López-Contreras AM, Lopes Ferreira N.

J Microbiol Methods. 2017 Sep;140:5-11. doi: 10.1016/j.mimet.2017.06.010. Epub 2017 Jun 10.

4.

Biorefinery of the green seaweed Ulva lactuca to produce animal feed, chemicals and biofuels.

Bikker P, van Krimpen MM, van Wikselaar P, Houweling-Tan B, Scaccia N, van Hal JW, Huijgen WJ, Cone JW, López-Contreras AM.

J Appl Phycol. 2016;28(6):3511-3525. doi: 10.1007/s10811-016-0842-3. Epub 2016 Apr 23.

5.

"In situ" removal of isopropanol, butanol and ethanol from fermentation broth by gas stripping.

de Vrije T, Budde M, van der Wal H, Claassen PA, López-Contreras AM.

Bioresour Technol. 2013 Jun;137:153-9. doi: 10.1016/j.biortech.2013.03.098. Epub 2013 Mar 21.

PMID:
23584415
6.

Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva lactuca.

van der Wal H, Sperber BL, Houweling-Tan B, Bakker RR, Brandenburg W, López-Contreras AM.

Bioresour Technol. 2013 Jan;128:431-7. doi: 10.1016/j.biortech.2012.10.094. Epub 2012 Nov 7.

PMID:
23201525
7.

Simultaneous production of isopropanol, butanol, ethanol and 2,3-butanediol by Clostridium acetobutylicum ATCC 824 engineered strains.

Collas F, Kuit W, Clément B, Marchal R, López-Contreras AM, Monot F.

AMB Express. 2012 Aug 21;2(1):45. doi: 10.1186/2191-0855-2-45.

8.

Disruption of the acetate kinase (ack) gene of Clostridium acetobutylicum results in delayed acetate production.

Kuit W, Minton NP, López-Contreras AM, Eggink G.

Appl Microbiol Biotechnol. 2012 May;94(3):729-41. doi: 10.1007/s00253-011-3848-4. Epub 2012 Jan 17.

9.

D-2,3-butanediol production due to heterologous expression of an acetoin reductase in Clostridium acetobutylicum.

Siemerink MA, Kuit W, López Contreras AM, Eggink G, van der Oost J, Kengen SW.

Appl Environ Microbiol. 2011 Apr;77(8):2582-8. doi: 10.1128/AEM.01616-10. Epub 2011 Feb 18.

10.

Incorporation of fungal cellulases in bacterial minicellulosomes yields viable, synergistically acting cellulolytic complexes.

Mingardon F, Chanal A, López-Contreras AM, Dray C, Bayer EA, Fierobe HP.

Appl Environ Microbiol. 2007 Jun;73(12):3822-32. Epub 2007 Apr 27.

11.

Substrate-induced production and secretion of cellulases by Clostridium acetobutylicum.

López-Contreras AM, Gabor K, Martens AA, Renckens BA, Claassen PA, Van Der Oost J, De Vos WM.

Appl Environ Microbiol. 2004 Sep;70(9):5238-43.

12.

Production by Clostridium acetobutylicum ATCC 824 of CelG, a cellulosomal glycoside hydrolase belonging to family 9.

López-Contreras AM, Martens AA, Szijarto N, Mooibroek H, Claassen PA, van der Oost J, de Vos WM.

Appl Environ Microbiol. 2003 Feb;69(2):869-77.

Supplemental Content

Loading ...
Support Center