Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 25

1.

Live-cell assays reveal selectivity and sensitivity of the multidrug response in budding yeast.

Vanacloig-Pedros E, Lozano-Pérez C, Alarcón B, Pascual-Ahuir A, Proft M.

J Biol Chem. 2019 Aug 30;294(35):12933-12946. doi: 10.1074/jbc.RA119.009291. Epub 2019 Jul 11.

PMID:
31296662
2.

Dose dependent gene expression is dynamically modulated by the history, physiology and age of yeast cells.

Pascual-Ahuir A, González-Cantó E, Juyoux P, Pable J, Poveda-Huertes D, Saiz-Balbastre S, Squeo S, Ureña-Marco A, Vanacloig-Pedros E, Zaragoza-Infante L, Proft M.

Biochim Biophys Acta Gene Regul Mech. 2019 Apr;1862(4):457-471. doi: 10.1016/j.bbagrm.2019.02.009. Epub 2019 Mar 2.

PMID:
30836134
3.

Regulation of the Stress-Activated Degradation of Mitochondrial Respiratory Complexes in Yeast.

Timón-Gómez A, Sanfeliu-Redondo D, Pascual-Ahuir A, Proft M.

Front Microbiol. 2018 Jan 30;9:106. doi: 10.3389/fmicb.2018.00106. eCollection 2018.

4.

Stress-Activated Degradation of Sphingolipids Regulates Mitochondrial Function and Cell Death in Yeast.

Manzanares-Estreder S, Pascual-Ahuir A, Proft M.

Oxid Med Cell Longev. 2017;2017:2708345. doi: 10.1155/2017/2708345. Epub 2017 Aug 6.

5.

Pro- and Antioxidant Functions of the Peroxisome-Mitochondria Connection and Its Impact on Aging and Disease.

Pascual-Ahuir A, Manzanares-Estreder S, Proft M.

Oxid Med Cell Longev. 2017;2017:9860841. doi: 10.1155/2017/9860841. Epub 2017 Jul 24. Review.

6.

Ask yeast how to burn your fats: lessons learned from the metabolic adaptation to salt stress.

Pascual-Ahuir A, Manzanares-Estreder S, Timón-Gómez A, Proft M.

Curr Genet. 2018 Feb;64(1):63-69. doi: 10.1007/s00294-017-0724-5. Epub 2017 Jun 19. Review.

PMID:
28631015
7.

Multilayered control of peroxisomal activity upon salt stress in Saccharomyces cerevisiae.

Manzanares-Estreder S, Espí-Bardisa J, Alarcón B, Pascual-Ahuir A, Proft M.

Mol Microbiol. 2017 Jun;104(5):851-868. doi: 10.1111/mmi.13669. Epub 2017 Apr 10.

8.

Different Toxicity Mechanisms for Citrinin and Ochratoxin A Revealed by Transcriptomic Analysis in Yeast.

Vanacloig-Pedros E, Proft M, Pascual-Ahuir A.

Toxins (Basel). 2016 Sep 22;8(10). pii: E273. doi: 10.3390/toxins8100273.

9.

Different Mechanisms Confer Gradual Control and Memory at Nutrient- and Stress-Regulated Genes in Yeast.

Rienzo A, Poveda-Huertes D, Aydin S, Buchler NE, Pascual-Ahuir A, Proft M.

Mol Cell Biol. 2015 Nov;35(21):3669-83. doi: 10.1128/MCB.00729-15. Epub 2015 Aug 17.

10.

Coordinated gene regulation in the initial phase of salt stress adaptation.

Vanacloig-Pedros E, Bets-Plasencia C, Pascual-Ahuir A, Proft M.

J Biol Chem. 2015 Apr 17;290(16):10163-75. doi: 10.1074/jbc.M115.637264. Epub 2015 Mar 5.

11.

Toxicity mechanisms of the food contaminant citrinin: application of a quantitative yeast model.

Pascual-Ahuir A, Vanacloig-Pedros E, Proft M.

Nutrients. 2014 May 22;6(5):2077-87. doi: 10.3390/nu6052077.

12.

Differential regulation of mitochondrial pyruvate carrier genes modulates respiratory capacity and stress tolerance in yeast.

Timón-Gómez A, Proft M, Pascual-Ahuir A.

PLoS One. 2013 Nov 14;8(11):e79405. doi: 10.1371/journal.pone.0079405. eCollection 2013.

13.

Deciphering dynamic dose responses of natural promoters and single cis elements upon osmotic and oxidative stress in yeast.

Dolz-Edo L, Rienzo A, Poveda-Huertes D, Pascual-Ahuir A, Proft M.

Mol Cell Biol. 2013 Jun;33(11):2228-40. doi: 10.1128/MCB.00240-13. Epub 2013 Mar 25.

14.

Activator and repressor functions of the Mot3 transcription factor in the osmostress response of Saccharomyces cerevisiae.

Martínez-Montañés F, Rienzo A, Poveda-Huertes D, Pascual-Ahuir A, Proft M.

Eukaryot Cell. 2013 May;12(5):636-47. doi: 10.1128/EC.00037-13. Epub 2013 Feb 22.

15.

The use of a real-time luciferase assay to quantify gene expression dynamics in the living yeast cell.

Rienzo A, Pascual-Ahuir A, Proft M.

Yeast. 2012 Jun;29(6):219-31. doi: 10.1002/yea.2905. Epub 2012 Jun 2.

16.

Quantification of protein-DNA interactions by in vivo chromatin immunoprecipitation in yeast.

Pascual-Ahuir A, Proft M.

Methods Mol Biol. 2012;809:149-56. doi: 10.1007/978-1-61779-376-9_10.

PMID:
22113274
17.

Sir2 histone deacetylase prevents programmed cell death caused by sustained activation of the Hog1 stress-activated protein kinase.

Vendrell A, Martínez-Pastor M, González-Novo A, Pascual-Ahuir A, Sinclair DA, Proft M, Posas F.

EMBO Rep. 2011 Sep 30;12(10):1062-8. doi: 10.1038/embor.2011.154.

18.

Repression of ergosterol biosynthesis is essential for stress resistance and is mediated by the Hog1 MAP kinase and the Mot3 and Rox1 transcription factors.

Montañés FM, Pascual-Ahuir A, Proft M.

Mol Microbiol. 2011 Feb;79(4):1008-23. doi: 10.1111/j.1365-2958.2010.07502.x. Epub 2010 Dec 28.

19.

Adaptive changes of the yeast mitochondrial proteome in response to salt stress.

Martínez-Pastor M, Proft M, Pascual-Ahuir A.

OMICS. 2010 Oct;14(5):541-52. doi: 10.1089/omi.2010.0020.

PMID:
20955007
20.

Hal4 and Hal5 protein kinases are required for general control of carbon and nitrogen uptake and metabolism.

Pérez-Valle J, Rothe J, Primo C, Martínez Pastor M, Ariño J, Pascual-Ahuir A, Mulet JM, Serrano R, Yenush L.

Eukaryot Cell. 2010 Dec;9(12):1881-90. doi: 10.1128/EC.00184-10. Epub 2010 Oct 15.

Supplemental Content

Loading ...
Support Center