Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 20

1.

Structural, physical, chemical, and biological surface characterization of thermomechanically treated Ti-Nb-based alloys for bone implants.

Sheremetyev V, Petrzhik M, Zhukova Y, Kazakbiev A, Arkhipova A, Moisenovich M, Prokoshkin S, Brailovski V.

J Biomed Mater Res B Appl Biomater. 2019 May 23. doi: 10.1002/jbm.b.34419. [Epub ahead of print]

PMID:
31121090
2.

Quasi-static tensile properties of the Cranial Cruciate Ligament (CrCL) in adult cattle: towards the design of a prosthetic CrCL.

Diotalevi L, Petit Y, Brailovski V, Nichols S, Marchionatti E, Wagnac É.

J Mech Behav Biomed Mater. 2018 Mar;79:239-245. doi: 10.1016/j.jmbbm.2017.12.024. Epub 2017 Dec 26.

PMID:
29331937
3.

Development and in vitro validation of a simplified numerical model for the design of a biomimetic femoral stem.

Jetté B, Brailovski V, Simoneau C, Dumas M, Terriault P.

J Mech Behav Biomed Mater. 2018 Jan;77:539-550. doi: 10.1016/j.jmbbm.2017.10.019. Epub 2017 Oct 16.

PMID:
29069636
4.

Impact of spinal rod stiffness on porcine lumbar biomechanics: Finite element model validation and parametric study.

Brummund M, Brailovski V, Petit Y, Facchinello Y, Mac-Thiong JM.

Proc Inst Mech Eng H. 2017 Dec;231(12):1071-1080. doi: 10.1177/0954411917732596. Epub 2017 Sep 19.

PMID:
28927347
5.

Femoral stem incorporating a diamond cubic lattice structure: Design, manufacture and testing.

Jetté B, Brailovski V, Dumas M, Simoneau C, Terriault P.

J Mech Behav Biomed Mater. 2018 Jan;77:58-72. doi: 10.1016/j.jmbbm.2017.08.034. Epub 2017 Aug 31.

PMID:
28888934
6.

Impact of anchor type on porcine lumbar biomechanics: Finite element modelling and in-vitro validation.

Brummund M, Brailovski V, Petit Y, Facchinello Y, Mac-Thiong JM.

Clin Biomech (Bristol, Avon). 2017 Mar;43:86-94. doi: 10.1016/j.clinbiomech.2017.02.007. Epub 2017 Feb 14.

PMID:
28222402
7.

Evaluation of the effect of 4 types of knots on the mechanical properties of 4 types of suture material used in small animal practice.

Avoine X, Lussier B, Brailovski V, Inaekyan K, Beauchamp G.

Can J Vet Res. 2016 Apr;80(2):162-70.

8.

In-vitro assessment of the stabilization capacity of monolithic spinal rods with variable flexural stiffness: Methodology and examples.

Facchinello Y, Brailovski V, Petit Y, Brummund M, Tremblay J, Mac-Thiong JM.

Conf Proc IEEE Eng Med Biol Soc. 2015;2015:3913-6. doi: 10.1109/EMBC.2015.7319249.

PMID:
26737149
9.

Implementation of a 3D porcine lumbar finite element model for the simulation of monolithic spinal rods with variable flexural stiffness.

Brummund M, Brailovski V, Facchinello Y, Petit Y, Mac-Thiong JM.

Conf Proc IEEE Eng Med Biol Soc. 2015 Aug;2015:917-20. doi: 10.1109/EMBC.2015.7318512.

PMID:
26736412
10.

Biomechanical assessment of the stabilization capacity of monolithic spinal rods with different flexural stiffness and anchoring arrangement.

Facchinello Y, Brailovski V, Petit Y, Brummund M, Tremblay J, Mac-Thiong JM.

Clin Biomech (Bristol, Avon). 2015 Dec;30(10):1026-35. doi: 10.1016/j.clinbiomech.2015.09.011. Epub 2015 Sep 25.

PMID:
26421654
11.

Braided tubular superelastic cables provide improved spinal stability compared to multifilament sublaminar cables.

Tremblay J, Mac-Thiong JM, Brailovski V, Petit Y.

Proc Inst Mech Eng H. 2015 Sep;229(9):645-51. doi: 10.1177/0954411915597258. Epub 2015 Jul 23.

PMID:
26205511
12.

Factors affecting intradiscal pressure measurement during in vitro biomechanical tests.

Tremblay J, Brailovski V, Mac-Thiong JM, Petit Y.

Scoliosis. 2015 Feb 11;10(Suppl 2):S1. doi: 10.1186/1748-7161-10-S2-S1. eCollection 2015.

13.

Monolithic superelastic rods with variable flexural stiffness for spinal fusion: simplified finite element analysis of an instrumented spine segment.

Facchinello Y, Brailovski V, Petit Y, Mac-Thiong JM.

Conf Proc IEEE Eng Med Biol Soc. 2014;2014:6605-8. doi: 10.1109/EMBC.2014.6945142.

PMID:
25571510
14.

Monolithic superelastic rods with variable flexural stiffness for spinal fusion: modeling of the processing-properties relationship.

Facchinello Y, Brailovski V, Petit Y, Mac-Thiong JM.

Med Eng Phys. 2014 Nov;36(11):1455-63. doi: 10.1016/j.medengphy.2014.07.012. Epub 2014 Aug 12.

PMID:
25128020
15.

Initial tension loss in cerclage cables.

Ménard J Jr, Émard M, Canet F, Brailovski V, Petit Y, Laflamme GY.

J Arthroplasty. 2013 Oct;28(9):1509-12. doi: 10.1016/j.arth.2013.03.014. Epub 2013 Apr 22.

PMID:
23618753
16.

Manufacturing of monolithic superelastic rods with variable properties for spinal correction: feasibility study.

Facchinello Y, Brailovski V, Inaekyan K, Petit Y, Mac-Thiong JM.

J Mech Behav Biomed Mater. 2013 Jun;22:1-11. doi: 10.1016/j.jmbbm.2013.03.013. Epub 2013 Mar 30.

PMID:
23603735
17.

Improving greater trochanteric reattachment with a novel cable plate system.

Baril Y, Bourgeois Y, Brailovski V, Duke K, Laflamme GY, Petit Y.

Med Eng Phys. 2013 Mar;35(3):383-91. doi: 10.1016/j.medengphy.2012.06.003. Epub 2012 Jul 1.

PMID:
22749768
18.

Force relaxation and sprinback of novel elastic orthopedic cables.

Canet F, Baril Y, Brailovski V, Petit Y, Bissonnette G, Laflamme GY.

Conf Proc IEEE Eng Med Biol Soc. 2011;2011:5758-61. doi: 10.1109/IEMBS.2011.6091425.

PMID:
22255648
19.

Effect of force tightening on cable tension and displacement in greater trochanter reattachment.

Canet F, Duke K, Bourgeois Y, Laflamme GY, Brailovski V, Petit Y.

Conf Proc IEEE Eng Med Biol Soc. 2011;2011:5749-52. doi: 10.1109/IEMBS.2011.6091423.

PMID:
22255646
20.

Finite element modeling of a progressively expanding shape memory stent.

Thériault P, Terriault P, Brailovski V, Gallo R.

J Biomech. 2006;39(15):2837-44. Epub 2005 Nov 2.

PMID:
16259989

Supplemental Content

Loading ...
Support Center