Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 44

1.

Genomic Analyses of Bifidobacterium moukalabense Reveal Adaptations to Frugivore/Folivore Feeding Behavior.

Segawa T, Fukuchi S, Bodington D, Tsuchida S, Mbehang Nguema PP, Mori H, Ushida K.

Microorganisms. 2019 Apr 4;7(4). pii: E99. doi: 10.3390/microorganisms7040099.

2.

Functional Segments on Intrinsically Disordered Regions in Disease-Related Proteins.

Anbo H, Sato M, Okoshi A, Fukuchi S.

Biomolecules. 2019 Mar 5;9(3). pii: E88. doi: 10.3390/biom9030088.

3.

Both Intrinsically Disordered Regions and Structural Domains Evolve Rapidly in Immune-Related Mammalian Proteins.

Homma K, Anbo H, Noguchi T, Fukuchi S.

Int J Mol Sci. 2018 Dec 4;19(12). pii: E3860. doi: 10.3390/ijms19123860.

4.

Discovery of Cryoprotective Activity in Human Genome-Derived Intrinsically Disordered Proteins.

Matsuo N, Goda N, Shimizu K, Fukuchi S, Ota M, Hiroaki H.

Int J Mol Sci. 2018 Jan 30;19(2). pii: E401. doi: 10.3390/ijms19020401.

5.

Large-scale aggregation analysis of eukaryotic proteins reveals an involvement of intrinsically disordered regions in protein folding.

Uemura E, Niwa T, Minami S, Takemoto K, Fukuchi S, Machida K, Imataka H, Ueda T, Ota M, Taguchi H.

Sci Rep. 2018 Jan 12;8(1):678. doi: 10.1038/s41598-017-18977-5.

6.

Sequence conservation of protein binding segments in intrinsically disordered regions.

Ota H, Fukuchi S.

Biochem Biophys Res Commun. 2017 Dec 16;494(3-4):602-607. doi: 10.1016/j.bbrc.2017.10.099. Epub 2017 Oct 21.

7.

The Disordered Linker in p53 Participates in Nonspecific Binding to and One-Dimensional Sliding along DNA Revealed by Single-Molecule Fluorescence Measurements.

Subekti DRG, Murata A, Itoh Y, Fukuchi S, Takahashi H, Kanbayashi S, Takahashi S, Kamagata K.

Biochemistry. 2017 Aug 15;56(32):4134-4144. doi: 10.1021/acs.biochem.7b00292. Epub 2017 Aug 3.

PMID:
28718283
8.
9.

Multiple-Localization and Hub Proteins.

Ota M, Gonja H, Koike R, Fukuchi S.

PLoS One. 2016 Jun 10;11(6):e0156455. doi: 10.1371/journal.pone.0156455. eCollection 2016.

10.

Risk factors for deterioration of long-term liver function after radiofrequency ablation therapy.

Honda K, Seike M, Oribe J, Endo M, Arakawa M, Syo H, Iwao M, Tokoro M, Nishimura J, Mori T, Yamashita T, Fukuchi S, Muro T, Murakami K.

World J Hepatol. 2016 May 8;8(13):597-604. doi: 10.4254/wjh.v8.i13.597.

11.

Erratum: Investigation of the fatty acid transporter-encoding genes SLC27A3 and SLC27A4 in autism.

Maekawa M, Iwayama Y, Ohnishi T, Toyoshima M, Shimamoto C, Hisano Y, Toyota T, Balan S, Matsuzaki H, Iwata Y, Takagai S, Yamada K, Ota M, Fukuchi S, Okada Y, Akamatsu W, Tsujii M, Kojima N, Owada Y, Okano H, Mori N, Yoshikawa T.

Sci Rep. 2016 Jan 29;6:20268. doi: 10.1038/srep20268. No abstract available.

12.

Investigation of the fatty acid transporter-encoding genes SLC27A3 and SLC27A4 in autism.

Maekawa M, Iwayama Y, Ohnishi T, Toyoshima M, Shimamoto C, Hisano Y, Toyota T, Balan S, Matsuzaki H, Iwata Y, Takagai S, Yamada K, Ota M, Fukuchi S, Okada Y, Akamatsu W, Tsujii M, Kojima N, Owada Y, Okano H, Mori N, Yoshikawa T.

Sci Rep. 2015 Nov 9;5:16239. doi: 10.1038/srep16239. Erratum in: Sci Rep. 2016;6:20268.

13.

An optimized Npro-based method for the expression and purification of intrinsically disordered proteins for an NMR study.

Goda N, Matsuo N, Tenno T, Ishino S, Ishino Y, Fukuchi S, Ota M, Hiroaki H.

Intrinsically Disord Proteins. 2015 Feb 23;3(1):e1011004. doi: 10.1080/21690707.2015.1011004. eCollection 2015.

14.

Investigation of glycan evolution based on a comprehensive analysis of glycosyltransferases using phylogenetic profiling.

Tomono T, Kojima H, Fukuchi S, Tohsato Y, Ito M.

Biophys Physicobiol. 2015 Nov 12;12:57-68. doi: 10.2142/biophysico.12.0_57. eCollection 2015.

15.

Exon resequencing of H3K9 methyltransferase complex genes, EHMT1, EHTM2 and WIZ, in Japanese autism subjects.

Balan S, Iwayama Y, Maekawa M, Toyota T, Ohnishi T, Toyoshima M, Shimamoto C, Esaki K, Yamada K, Iwata Y, Suzuki K, Ide M, Ota M, Fukuchi S, Tsujii M, Mori N, Shinkai Y, Yoshikawa T.

Mol Autism. 2014 Oct 6;5(1):49. doi: 10.1186/2040-2392-5-49. eCollection 2014.

16.

IDEAL in 2014 illustrates interaction networks composed of intrinsically disordered proteins and their binding partners.

Fukuchi S, Amemiya T, Sakamoto S, Nobe Y, Hosoda K, Kado Y, Murakami SD, Koike R, Hiroaki H, Ota M.

Nucleic Acids Res. 2014 Jan;42(Database issue):D320-5. doi: 10.1093/nar/gkt1010. Epub 2013 Oct 30.

17.

An assignment of intrinsically disordered regions of proteins based on NMR structures.

Ota M, Koike R, Amemiya T, Tenno T, Romero PR, Hiroaki H, Dunker AK, Fukuchi S.

J Struct Biol. 2013 Jan;181(1):29-36. doi: 10.1016/j.jsb.2012.10.017. Epub 2012 Nov 7.

18.

Intrinsically disordered proteins in human mitochondria.

Ito M, Tohsato Y, Sugisawa H, Kohara S, Fukuchi S, Nishikawa I, Nishikawa K.

Genes Cells. 2012 Oct;17(10):817-25. doi: 10.1111/gtc.12000. Epub 2012 Aug 22.

19.

IDEAL: Intrinsically Disordered proteins with Extensive Annotations and Literature.

Fukuchi S, Sakamoto S, Nobe Y, Murakami SD, Amemiya T, Hosoda K, Koike R, Hiroaki H, Ota M.

Nucleic Acids Res. 2012 Jan;40(Database issue):D507-11. doi: 10.1093/nar/gkr884. Epub 2011 Nov 8.

20.

Intrinsically disordered regions have specific functions in mitochondrial and nuclear proteins.

Homma K, Fukuchi S, Nishikawa K, Sakamoto S, Sugawara H.

Mol Biosyst. 2012 Jan;8(1):247-55. doi: 10.1039/c1mb05208j. Epub 2011 Aug 24.

PMID:
21866296

Supplemental Content

Loading ...
Support Center