Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 51

1.

Expression of Ice-Binding Proteins in Caenorhabditis elegans Improves the Survival Rate upon Cold Shock and during Freezing.

Kuramochi M, Takanashi C, Yamauchi A, Doi M, Mio K, Tsuda S, Sasaki YC.

Sci Rep. 2019 May 15;9(1):6246. doi: 10.1038/s41598-019-42650-8.

2.

Calcium-Binding Generates the Semi-Clathrate Waters on a Type II Antifreeze Protein to Adsorb onto an Ice Crystal Surface.

Arai T, Nishimiya Y, Ohyama Y, Kondo H, Tsuda S.

Biomolecules. 2019 Apr 27;9(5). pii: E162. doi: 10.3390/biom9050162.

3.

Freeze Tolerance in Sculpins (Pisces; Cottoidea) Inhabiting North Pacific and Arctic Oceans: Antifreeze Activity and Gene Sequences of the Antifreeze Protein.

Yamazaki A, Nishimiya Y, Tsuda S, Togashi K, Munehara H.

Biomolecules. 2019 Apr 6;9(4). pii: E139. doi: 10.3390/biom9040139.

4.

Ice recrystallization is strongly inhibited when antifreeze proteins bind to multiple ice planes.

Rahman AT, Arai T, Yamauchi A, Miura A, Kondo H, Ohyama Y, Tsuda S.

Sci Rep. 2019 Feb 13;9(1):2212. doi: 10.1038/s41598-018-36546-2.

5.

Ice-binding proteins from the fungus Antarctomyces psychrotrophicus possibly originate from two different bacteria through horizontal gene transfer.

Arai T, Fukami D, Hoshino T, Kondo H, Tsuda S.

FEBS J. 2019 Mar;286(5):946-962. doi: 10.1111/febs.14725. Epub 2018 Dec 28.

PMID:
30548092
6.

Applications of Antifreeze Proteins: Practical Use of the Quality Products from Japanese Fishes.

Mahatabuddin S, Tsuda S.

Adv Exp Med Biol. 2018;1081:321-337. doi: 10.1007/978-981-13-1244-1_17. Review.

PMID:
30288717
7.

Unexpected Rise of Glass Transition Temperature of Ice Crystallized from Antifreeze Protein Solution.

Azuma N, Miyazaki Y, Nakano M, Tsuda S.

J Phys Chem Lett. 2018 Aug 16;9(16):4512-4515. doi: 10.1021/acs.jpclett.8b01492. Epub 2018 Jul 30.

PMID:
30048129
8.

Polypentagonal ice-like water networks emerge solely in an activity-improved variant of ice-binding protein.

Mahatabuddin S, Fukami D, Arai T, Nishimiya Y, Shimizu R, Shibazaki C, Kondo H, Adachi M, Tsuda S.

Proc Natl Acad Sci U S A. 2018 May 22;115(21):5456-5461. doi: 10.1073/pnas.1800635115. Epub 2018 May 7.

9.

Total Synthesis of O-GalNAcylated Antifreeze Glycoprotein using the Switchable Reactivity of Peptidyl-N-pivaloylguanidine.

Orii R, Sakamoto N, Fukami D, Tsuda S, Izumi M, Kajihara Y, Okamoto R.

Chemistry. 2017 Jul 12;23(39):9253-9257. doi: 10.1002/chem.201702243. Epub 2017 Jun 27.

PMID:
28516497
10.

Concentration-dependent oligomerization of an alpha-helical antifreeze polypeptide makes it hyperactive.

Mahatabuddin S, Hanada Y, Nishimiya Y, Miura A, Kondo H, Davies PL, Tsuda S.

Sci Rep. 2017 Feb 13;7:42501. doi: 10.1038/srep42501.

11.

Hydrophobic ice-binding sites confer hyperactivity of an antifreeze protein from a snow mold fungus.

Cheng J, Hanada Y, Miura A, Tsuda S, Kondo H.

Biochem J. 2016 Nov 1;473(21):4011-4026. Epub 2016 Sep 9.

PMID:
27613857
12.

Prolonging hypothermic storage (4 C) of bovine embryos with fish antifreeze protein.

Ideta A, Aoyagi Y, Tsuchiya K, Nakamura Y, Hayama K, Shirasawa A, Sakaguchi K, Tominaga N, Nishimiya Y, Tsuda S.

J Reprod Dev. 2015;61(1):1-6. doi: 10.1262/jrd.2014-073. Epub 2014 Oct 10.

13.

Hyperactive antifreeze protein from an Antarctic sea ice bacterium Colwellia sp. has a compound ice-binding site without repetitive sequences.

Hanada Y, Nishimiya Y, Miura A, Tsuda S, Kondo H.

FEBS J. 2014 Aug;281(16):3576-90. doi: 10.1111/febs.12878. Epub 2014 Jul 4.

14.

Determining the ice-binding planes of antifreeze proteins by fluorescence-based ice plane affinity.

Basu K, Garnham CP, Nishimiya Y, Tsuda S, Braslavsky I, Davies P.

J Vis Exp. 2014 Jan 15;(83):e51185. doi: 10.3791/51185.

15.

Antifreeze protein activity in Arctic cryoconite bacteria.

Singh P, Hanada Y, Singh SM, Tsuda S.

FEMS Microbiol Lett. 2014 Feb;351(1):14-22. doi: 10.1111/1574-6968.12345. Epub 2013 Dec 18.

16.

Identification of a novel LEA protein involved in freezing tolerance in wheat.

Sasaki K, Christov NK, Tsuda S, Imai R.

Plant Cell Physiol. 2014 Jan;55(1):136-47. doi: 10.1093/pcp/pct164. Epub 2013 Nov 20.

PMID:
24265272
17.

Annealing condition influences thermal hysteresis of fungal type ice-binding proteins.

Xiao N, Hanada Y, Seki H, Kondo H, Tsuda S, Hoshino T.

Cryobiology. 2014 Feb;68(1):159-61. doi: 10.1016/j.cryobiol.2013.10.008. Epub 2013 Nov 4.

PMID:
24201106
18.

Antifreeze protein prolongs the life-time of insulinoma cells during hypothermic preservation.

Kamijima T, Sakashita M, Miura A, Nishimiya Y, Tsuda S.

PLoS One. 2013 Sep 17;8(9):e73643. doi: 10.1371/journal.pone.0073643. eCollection 2013.

19.

Cold adaptation of fungi obtained from soil and lake sediment in the Skarvsnes ice-free area, Antarctica.

Tsuji M, Fujiu S, Xiao N, Hanada Y, Kudoh S, Kondo H, Tsuda S, Hoshino T.

FEMS Microbiol Lett. 2013 Sep;346(2):121-30. doi: 10.1111/1574-6968.12217. Epub 2013 Aug 5.

20.

Microwave-assisted solid-phase synthesis of antifreeze glycopeptides.

Izumi R, Matsushita T, Fujitani N, Naruchi K, Shimizu H, Tsuda S, Hinou H, Nishimura S.

Chemistry. 2013 Mar 18;19(12):3913-20. doi: 10.1002/chem.201203731. Epub 2013 Feb 10.

PMID:
23401082

Supplemental Content

Loading ...
Support Center