Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 37

1.

In-Vitro Characterization of mCerulean3_mRuby3 as a Novel FRET Pair with Favorable Bleed-Through Characteristics.

Erismann-Ebner K, Marowsky A, Arand M.

Biosensors (Basel). 2019 Feb 28;9(1). pii: E33. doi: 10.3390/bios9010033.

2.

Impact of the epoxide hydrolase EphD on the metabolism of mycolic acids in mycobacteria.

Madacki J, Laval F, Grzegorzewicz A, Lemassu A, Záhorszká M, Arand M, McNeil M, Daffé M, Jackson M, Lanéelle MA, Korduláková J.

J Biol Chem. 2018 Apr 6;293(14):5172-5184. doi: 10.1074/jbc.RA117.000246. Epub 2018 Feb 22.

3.

Epoxide hydrolase 1 (EPHX1) hydrolyzes epoxyeicosanoids and impairs cardiac recovery after ischemia.

Edin ML, Hamedani BG, Gruzdev A, Graves JP, Lih FB, Arbes SJ 3rd, Singh R, Orjuela Leon AC, Bradbury JA, DeGraff LM, Hoopes SL, Arand M, Zeldin DC.

J Biol Chem. 2018 Mar 2;293(9):3281-3292. doi: 10.1074/jbc.RA117.000298. Epub 2018 Jan 3.

4.

Evidence for a complex formation between CYP2J5 and mEH in living cells by FRET analysis of membrane protein interaction in the endoplasmic reticulum (FAMPIR).

Orjuela Leon AC, Marwosky A, Arand M.

Arch Toxicol. 2017 Nov;91(11):3561-3570. doi: 10.1007/s00204-017-2072-0. Epub 2017 Oct 13.

5.

Beyond detoxification: a role for mouse mEH in the hepatic metabolism of endogenous lipids.

Marowsky A, Meyer I, Erismann-Ebner K, Pellegrini G, Mule N, Arand M.

Arch Toxicol. 2017 Nov;91(11):3571-3585. doi: 10.1007/s00204-017-2060-4. Epub 2017 Oct 3.

6.

11,12 -Epoxyeicosatrienoic acid (11,12 EET) reduces excitability and excitatory transmission in the hippocampus.

Mule NK, Orjuela Leon AC, Falck JR, Arand M, Marowsky A.

Neuropharmacology. 2017 Sep 1;123:310-321. doi: 10.1016/j.neuropharm.2017.05.013. Epub 2017 May 17.

7.

Misclassification of PfEH1 and PfEH2 as Epoxide Hydrolases.

Arand M, Marowsky A.

MBio. 2017 Mar 7;8(2). pii: e00004-17. doi: 10.1128/mBio.00004-17. No abstract available.

8.

Genetic enhancement of microsomal epoxide hydrolase improves metabolic detoxification but impairs cerebral blood flow regulation.

Marowsky A, Haenel K, Bockamp E, Heck R, Rutishauser S, Mule N, Kindler D, Rudin M, Arand M.

Arch Toxicol. 2016 Dec;90(12):3017-3027. Epub 2016 Feb 2.

9.

Differential Toxicity of Antibodies to the Prion Protein.

Reimann RR, Sonati T, Hornemann S, Herrmann US, Arand M, Hawke S, Aguzzi A.

PLoS Pathog. 2016 Jan 28;12(1):e1005401. doi: 10.1371/journal.ppat.1005401. eCollection 2016 Jan.

10.

International STakeholder NETwork (ISTNET): creating a developmental neurotoxicity (DNT) testing road map for regulatory purposes.

Bal-Price A, Crofton KM, Leist M, Allen S, Arand M, Buetler T, Delrue N, FitzGerald RE, Hartung T, Heinonen T, Hogberg H, Bennekou SH, Lichtensteiger W, Oggier D, Paparella M, Axelstad M, Piersma A, Rached E, Schilter B, Schmuck G, Stoppini L, Tongiorgi E, Tiramani M, Monnet-Tschudi F, Wilks MF, Ylikomi T, Fritsche E.

Arch Toxicol. 2015 Feb;89(2):269-87. doi: 10.1007/s00204-015-1464-2. Epub 2015 Jan 25.

11.

EH3 (ABHD9): the first member of a new epoxide hydrolase family with high activity for fatty acid epoxides.

Decker M, Adamska M, Cronin A, Di Giallonardo F, Burgener J, Marowsky A, Falck JR, Morisseau C, Hammock BD, Gruzdev A, Zeldin DC, Arand M.

J Lipid Res. 2012 Oct;53(10):2038-45. doi: 10.1194/jlr.M024448. Epub 2012 Jul 12.

12.

Tonic inhibition in principal cells of the amygdala: a central role for α3 subunit-containing GABAA receptors.

Marowsky A, Rudolph U, Fritschy JM, Arand M.

J Neurosci. 2012 Jun 20;32(25):8611-9. doi: 10.1523/JNEUROSCI.4404-11.2012.

13.

Mammalian soluble epoxide hydrolase is identical to liver hepoxilin hydrolase.

Cronin A, Decker M, Arand M.

J Lipid Res. 2011 Apr;52(4):712-9. doi: 10.1194/jlr.M009639. Epub 2011 Jan 7.

14.

Identification of a CYP3A form (CYP3A126) in fathead minnow (Pimephales promelas) and characterisation of putative CYP3A enzyme activity.

Christen V, Caminada D, Arand M, Fent K.

Anal Bioanal Chem. 2010 Jan;396(2):585-95. doi: 10.1007/s00216-009-3251-5. Epub 2009 Nov 8.

PMID:
19898817
15.

Directed evolution of an enantioselective epoxide hydrolase: uncovering the source of enantioselectivity at each evolutionary stage.

Reetz MT, Bocola M, Wang LW, Sanchis J, Cronin A, Arand M, Zou J, Archelas A, Bottalla AL, Naworyta A, Mowbray SL.

J Am Chem Soc. 2009 Jun 3;131(21):7334-43. doi: 10.1021/ja809673d.

PMID:
19469578
16.

Mammalian epoxide hydrolases in xenobiotic metabolism and signalling.

Decker M, Arand M, Cronin A.

Arch Toxicol. 2009 Apr;83(4):297-318. doi: 10.1007/s00204-009-0416-0. Epub 2009 Apr 2. Review.

PMID:
19340413
17.

Insights into the catalytic mechanism of human sEH phosphatase by site-directed mutagenesis and LC-MS/MS analysis.

Cronin A, Homburg S, Dürk H, Richter I, Adamska M, Frère F, Arand M.

J Mol Biol. 2008 Nov 14;383(3):627-40. doi: 10.1016/j.jmb.2008.08.049. Epub 2008 Aug 27.

18.

Identification of two epoxide hydrolases in Caenorhabditis elegans that metabolize mammalian lipid signaling molecules.

Harris TR, Aronov PA, Jones PD, Tanaka H, Arand M, Hammock BD.

Arch Biochem Biophys. 2008 Apr 15;472(2):139-49. doi: 10.1016/j.abb.2008.01.016. Epub 2008 Jan 31.

19.

Comparison of lanosterol-14 alpha-demethylase (CYP51) of human and Candida albicans for inhibition by different antifungal azoles.

Trösken ER, Adamska M, Arand M, Zarn JA, Patten C, Völkel W, Lutz WK.

Toxicology. 2006 Nov 10;228(1):24-32. Epub 2006 Aug 12.

20.

Diversity and biocatalytic potential of epoxide hydrolases identified by genome analysis.

van Loo B, Kingma J, Arand M, Wubbolts MG, Janssen DB.

Appl Environ Microbiol. 2006 Apr;72(4):2905-17.

Supplemental Content

Loading ...
Support Center